• Title/Summary/Keyword: Powder characteristic

Search Result 425, Processing Time 0.029 seconds

Optimization of Ingredient Mixing Ratio for Preparation of Steamed Cake with Mugwort (Pseudosasa japonica Makino) Powder (혼합물 실험계획법에 의한 쑥 첨가 찜 케이크의 최적화)

  • Oh, Suk-Tae;Park, Jung-Eun
    • Korean journal of food and cookery science
    • /
    • v.28 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • This study examined the optimal ingredient mixing ratio for the preparation of steamed cake containing mugwort (Artemisia princeps var. orientalis) powder. After preliminary studies, the following ingredient ranges were determined; 110~129% sugar, 3~8% mugwort powder, 10~25% oil. Among the different mixture designs, the D-optimal design was chosen for analysis. The results of F-test, specific gravity, viscosity, volume and color values (L, a, b), hardness decided a linear model, while the sensory characteristics (color, taste, texture and overall acceptance) decided a quadratic model. The fitness analysis results showed that in all characteristic, the probabilities were significant within 0.05%; thus, the models were accepted as appropriate. The response surface and trace plot results showed that increasing amounts of mugwort powder decreased the brightness, and increased redness and yellowness. As the level of added oil increased, the softness of the cake increased. Cake samples received low sensory evaluation scores when sugar, mugwort powder, and oil were added above their optimal levels. The optimum formulations by the numerical and graphical methods, were similar, and with the numerical method presented as: sugar, mugwort powder, and oil at 120.7%, 5.1%, and 16.2%, respectively(flour weight basis). The above results demonstrate the feasibility of adding mugwort powder to sponge cake, and therefore, the commercialization of mugwort powder cake marketed as a functional food is deemed possible.

Sensory Characteristic of Backsulgi Added with Rich Sources of Phospholipid (인지방질 함유식품 첨가에 따른 백설기의 관능적 특성)

  • 이경아;김경자
    • Korean journal of food and cookery science
    • /
    • v.18 no.4
    • /
    • pp.390-398
    • /
    • 2002
  • The purpose of this study was to select a cake ingredient acting as an emulsifier to retard the retrogradation of rice cake commercially available. For the purpose, Backsulgi, a traditional Korean rice cake, was prepared by adding various ingredients having high contents of lecithin such as raw soybean powder, parched soybean powder, soybean oil, egg yolk powder, and then the changes in the sensory and textural characteristics of the cakes were determined while storing them at the temperatures of 4$\^{C}$ and 20$\^{C}$ for 0, 1, 2 and 3 days. Based on the sensory evaluation, Backsulgi samples added with raw soybean flour were significantly different in roasted nutty smell, roasted nutty taste, softness, moistness, cohesiveness and overall quality compared with the control in the longer storage time at 20$\^{C}$.

A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet (가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구)

  • Jang Ju-Young;Yoon Yo-Hyun;Park Jung-Min;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF

ZnO Octahedron Fabricated by Thermal Evaporation Technique in Air (공기 중에서 열증발법에 의하여 제작된 정팔면체 ZnO 결정)

  • Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.294-297
    • /
    • 2013
  • ZnO crystals with octahedral shape were synthesized by thermal evaporation technique. $ZnF_2$ powder was used as the source material. The thermal evaporation and oxidation of $ZnF_2$ powder was carried out for 1 hr at $1,000^{\circ}C$ in air under atmospheric pressure. SEM images showed that the ZnO crystals produced by oxidizing $ZnF_2$ vapor possessed a characteristic octahedral shape. XRD spectrum revealed that the ZnO octahedron had hexagonal wurtzite structure. In the room temperature photoluminescence spectrum, a strong green emission peak at around 510 nm was observed.

Effects of Particle Size Distribution of Alumina on Behaviors of Tape Casting (테이프 케스팅 거동에 미치는 알루미나의 입도분포의 영향)

  • 윤원균;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1173-1181
    • /
    • 1997
  • Effects of particle size distribution of alumina ceramics on behaviors of tape casting were investigated with emphases on the rheological characteristic of slurry, green density, green sheet strength, and sintering density. For the control of particle size distribution of alumina, the commercial grade low soda alumina, which had different mean particle size of 3.58 ${\mu}{\textrm}{m}$ and 0.42 ${\mu}{\textrm}{m}$, were chosen and blended together. As results, the mixing of 80 wt% fine powder and 20 wt% coarse powder(designated to FC20) led to the increase of packing density and strength of green sheet, and made it easy to handle during processing without lowering of sintering density. Besides, the pseudoplastic behavior of slurry decreased with increase of the fraction of coarse alumina powder.

  • PDF

Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis (유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석)

  • Jo, Jin-Rae;Ju, Yeong-Sin;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

Microstructural Change and Sintering Behavior of W-Cu Composite Powders Milled by 3-Dimensional Mixer (3차원 혼합기로 볼밀링한 W-Cu 복합분말의 미세구조 변화와 소결거동)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 1998
  • The W-Cu composite powders were synthesized from W and Cu elemental powders by ball-milling process, and their microstructural changes and sintering behaviors were evaluated. The ball milling process was carried out in a 3-dimensional mixer (Turbula mixer) using zirconic ($ZrO_2$) ball and alumina ($Al_2O_3$) vial up to 300 hrs. The ball-milled W-Cu powders revealed nearly spherical shape. Microstructure of the composite powders showed onion-like structure which consists of W and Cu shells due to the moving characteristic of Turbula mixer. The W and Cu elements in the composite powders milled for 300 hrs were homogeneously distributed, and W grain size in the ball-milled powder was smaller than 0.5 $\mu\textrm{m}$. Fe impurity introduced during ball milling process was very low as of 0.001 wt%. The relative sintered density of ball-milled W-Cu specimens reached about 94% after sintering at $1100^{\circ}C$.

  • PDF

Atomistic Simulation of Sintering Mechanism for Copper Nano-Powders

  • Seong, Yujin;Hwang, Sungwon;Kim, See Jo;Kim, Sungho;Kim, Seong-Gon;Kim, Hak Jun;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.

Modelling of the Electrochemical Performance of Functionally Graded Fuel Cell Electrodes by Discrete Simulations

  • Schneider, L.C.R.;Martin, C.L.;Bultel, Y.;Kapelski, G.;Bouvard, D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.916-917
    • /
    • 2006
  • Solid Oxide Fuel Cell technology uses powder processes to produce electrodes with residual porosity by partially sintering a mixture of electronically and ionically conducting particles. We model porous fuel cell electrodes with 3D packings of monosized spherical particles. These packings are created by numerical sintering. Each particle-particle contact is characteristic for an ionic, electronic or electrochemical resistance. The numerical packing is then discretized into a resistor network which is solved by using Kirchhoff's current law to evaluate the electrode's electrochemical performance. We investigate in particular percolation effects in functionally graded electrodes as compared to other types of electrodes.

  • PDF

Mechanochemical Synthesis of LaNiO3 Crystalline Phase from Mixture of La2O3sub> and NiO (La2O3의 메카노케미컬 합성에 의한 LaNiO3결정상 생성)

  • 김대영;김강언;이명교;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.681-687
    • /
    • 2003
  • The syntheses of LaNiO$_3$Perovskite crystalline phase from mixtures of La$_2$O$_3$and NiO via it mechanochemical(used planetary mill) and a wet ball mill process were investigated. A single and stable LaNiO$_3$perovskite crystalline phase was successfully prepared by using a heat free mechanochemical process which produced a fine amorphous powder, while that phase was not formed in a wet ball mill process which needed heat treatment ranging from 500 to 150$0^{\circ}C$ and produced a coarse powder. It was shown that the LaNiO$_3$ceramics made of the mechanochemically synthesized powder possesed a good metallic characteristic.