• Title/Summary/Keyword: Powder Material

Search Result 2,765, Processing Time 0.037 seconds

Properties and Application of Metal Sulfide Powder

  • Park, Dong-Kyu;Bae, Sung-Yeal;Ahn, In-Shup;Jung, Kwang-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.918-920
    • /
    • 2006
  • Metal sulfide powders such as MnS, $MoS_2$ and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, $FeS_2$ is appealing superior material for applications in $Li-2^{nd}$ battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.

  • PDF

Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material. (폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

A Study on the Purification Process of Alumina by Powder Technics (알루미나 정제공정의 분체공학적 연구)

  • 백행남;서태수;곽중협
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.655-664
    • /
    • 1988
  • As a part of study to establish the industrial process for manufacturing high purity alumina powder which is largely used as fine ceramics, an adsorption method using a silica-containing material which can absorb to eliminate a major impurity, Na in aluminum hydroxide as a raw material has been studied. It is confirmed that the primary property of powder such as the particle size of raw material and that of silica-containing material plays a great important role in the purification process.

  • PDF

Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part (산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성)

  • Kim, Young-Kyun;Park, Jong-Kwan;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

Effects of β-SiC Particle Seeds on Morphology and Size of High Purity β-SiC Powder Synthesized using Sol-Gel Process (β-SiC 분말 Seeds가 Sol-gel 공정으로 합성된 고순도 β-SiC 분말 형상 및 크기에 미치는 영향)

  • Kim, Gyu-Mi;Cho, Gyoung-Sun;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.528-533
    • /
    • 2009
  • High purity $\beta$-SiC powders were synthesized using sol-gel processing. TEOS and phenol resin were used as the starting material for the silicon source and carbon source, respectively. The process turned out to be capable of producing high purity SiC powder purity degree with 99.98 %. However, it was difficult to control the shape and size of $\beta$-SiC powders synthesized by sol-gel process. In this study, $\beta$-SiC powder with size of $1{\sim}5$ um an 30 nm were used as the seeds for $\beta$-SiC to control the $\beta$-SiC powder morphology. It was found that $\beta$-SiC powder seeds was effective to increase the powder average size of synthesized $\beta$-SiC using sol-gel process by acting as the preferred growing sites for $\beta$-SiC.

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process (기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조)

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

Characteristics of Cladding Process with High Viscosity Mixing Powder Using $CO_2$ Laser ($CO_2$ 레이저를 이용한 고점성 혼합분말의 클래딩 가공 특성)

  • 이영곤;전병철;오동수;서병권;김재도
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.256-259
    • /
    • 2000
  • High viscosity mixing powder is a very useful material for laser cladding. This material has a high viscosity so that it can be sticked to substrate. Therefore, Laser cladding can be performed on a curved or slope surface. Laser cladding can be easily performed with the material instead of wire that is difficult to be manufactured in some case. In this experiment, it was used a high viscosity mixing powder which consists of a high temperature flux and a bronze powder. And AC2B alloy material was used as a substrate. Flux prevents the clad layer from being oxidized and increases bonding property between substrate and cladding material. It makes possible to laser cladding at low level energy.

  • PDF

Process Optimization of Environment-Friendly Ag-SnO2 Electric Contact Materials through a Powder Metallurgy (친환경 Ag-SnO2 전기접점재료의 분말야금 공정 최적화)

  • Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.327-332
    • /
    • 2007
  • In a view point of environment, the advanced electric contact material without environmental load element such as cadmium has to be developed. Extensive studies have been carried out on $Ag-SnO_2$ electric contact material as a substitute of Ag-CdO contact materials. In the present study, powder metallurgy including compaction and sintering is introduced to solve the incomplete oxidation problems in manufacturing process of $Ag-SnO_2$ electrical contact material. The $Ag-SnO_2$ contact material, fabricated in this study, was actually set in an electric switchgear of which working voltage is 462V and current is between 25 and 40A, for the purpose of testing its performance. As a result, it exceeded the existing Ag-CdO contact materials in terminal-temperature ascent and main contact resistance.

A Study on the Predictive Modeling of Material Removal and Surface Roughness in Powder Blasting of Glass by Design of Experiments (파우더 블라스팅에 의한 유리가공시 실험계획법에 의한 재료 제거량 및 표면 거칠기 예측모델에 관한 연구)

  • Jin Quan-Qia;Seong Eun-Je;Han Jin-Yong;Yoo Woo-Sik;Park Dong-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.66-72
    • /
    • 2006
  • The old technique of sandblasting which has been used for paint or scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. In this paper, we studied on the predictive modeling of material removal and surface roughness in powder blasting of glass by design of experiments. The surface characteristics and surface shape of powder blasted glass surface were tested under different blasting parameter. Finally, we proposed a predictive model for powder blasting process, and compared with experimental results.