• 제목/요약/키워드: Powder Consolidation

검색결과 164건 처리시간 0.025초

분말 ECAP 공정 시 치밀화의 유한요소해석 (Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders)

  • 윤승채;팜쾅;천병선;이홍로;김형섭
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

급속응고 Al-20 wt% Si 합금 분말의 ECAP를 통한 고형화 (Consolidation of Rapidly Solidified Al-20 wt% Si Alloy Powders Using Equal Channel Angular Pressing)

  • 윤승채;홍순직;서민홍;정영기;김형섭
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.233-241
    • /
    • 2004
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10$0^{\circ}C$ and 20$0^{\circ}C$ It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.

연속 다단 ECAP 공정을 통한 급속응고 Al-20 wt% Si 합금 분말의 고형화 및 특성 평가 (Consolidation and Mechanical Property of Rapidly Solidified Al-20 wt% Si Alloy Powders by Continuous Equal Channel Multi-Angular Pressing)

  • 윤승채;복천희;서민홍;홍순직;김형섭
    • 한국분말재료학회지
    • /
    • 제15권1호
    • /
    • pp.31-36
    • /
    • 2008
  • In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.

$Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구 (Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder)

  • 김범성;이재성;오승탁;좌용호
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석 (Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders)

  • 윤승채;복천희;팜쾅;김형섭
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

$Fe_{73}Si_{16}B_7Nb_3Cu_1$ 나노결정합금 분말코아의 자기적 특성에 미치는 분말입도 및 볼밀링 시간의 영향 (Effects of Powder Size and Ball-milling Time on the Magnetic Properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Nanocrystalline Alloy Powder Cores)

  • 문병기;강성찬;박원욱;손근용
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.121-129
    • /
    • 2004
  • The influence of powder size and ball-milling time on the magnetic properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline alloy powder was investigated. Flake-shaped powders were produced by pulverizing the ribbons annealed at $550^\circC$ for 1 hour. The powders were classified and consolidated into core shapes at a pressure of 18ton/$cm^2$. The initial permeability at 100kHz of the inductor core produced using $53-75\mum$ powders showed the highest value although its consolidated density showed the lowest one. The reason for the result is due to the cracking of the particles larger than $75\mum$ during the consolidation process. The ball-milling of powders for 2-4 hours improved the consolidation density and the initial permeability of the cores. The intrinsic coercivity of the powder decreased as well, resulting from the stress relief of the powder by a short-time milling.

  • PDF

폐타이어 분말을 이용한 혼합경량토의 압축특성 연구 (Compression Characteristics of Waste Tire Powder-Added Lightweight Soil)

  • 강효섭;김윤태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.774-781
    • /
    • 2009
  • The purpose of this study was to research on compressibility characteristics of waste tire powder-added lightweight soil(TLS) for recycling dredged soil, bottom ash and waste tire. The TLS used in this experiment consists of dredged soil, cement, waste tire powder and bottom ash. Test specimens were prepared with various content of waste tire powder ranged from 0% to 100% at 25% intervals by the dried weight of dredged soil. Several series of one-dimensional consolidation tests were carried out. Based on the experimental results, as the waste tire powder increased, the swelling index of TLS increased. The compression index and swelling index of the TLS with bottom ash content showed lower value than without bottom ash. Then, compressibility characteristics of TLS were strongly influenced by mixing conditions of waste tire powder content and bottom ash content.

  • PDF

Microstructures and Mechanical Properties of Consolidated Mg-Zn-Y Alloy

  • Lee, Jin-Kyu;Kim, Taek-Soo;Jeong, Ha-Guk;Bae, Jung-Chan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1035-1036
    • /
    • 2006
  • The microstructure and mechanical properties of the $Mg_{97}Zn_Y_2$ alloy prepared by spark plasma sintering of gas atomized powders have been investigated. After consolidation, precipitates were observed to form in the ${\alpha}-Mg$ solid solution matrix of the $Mg_{97}Zn_1Y_2$ alloy. These precipitates consisted of $Mg_{12}YZn$ and $Mg_{24}Y_5$ phases. The density of the consolidated bulk Mg-Zn-Y alloy was $1.86g/cm^3$. The ultimate tensile strength and elongation were dependent on the consolidation temperature, which were in the ranges of 280 to 293 MPa and 8.5 to 20.8 %, respectively.

  • PDF