• Title/Summary/Keyword: Poultry Wastes

Search Result 24, Processing Time 0.026 seconds

A proposal for empowering slum dwellers as a viable way of addressing urbanization challenges in Katanga slum, Kampala, Uganda

  • Omulo, Godfrey;Muhsin, Musinguzi;Kasana, Ismail;Nabaterega, Resty
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.432-438
    • /
    • 2017
  • Slum settlement, a direct result of the rapid worldwide urbanization is a common site in most developing countries. Uganda is among the top African countries with high number of slums. The status of Katanga slum located in the low-lands between Mulago national hospital and Makerere University is a typical of many other slums within Uganda. This project proposal seeks to tackle urbanization challenges by specializing in slum upgrading as a sustainable way of curbing the menace. An integrated toilet, biogas, poultry and backyard gardening project is proposed as a channel of boosting the Katanga slum dwellers' economic, sanitation and domestic energy status. Designed to serve up to 30 households, the project will utilize residual wastes from poultry houses and toilets to produce biogas and slurry. The biogas yield will provide clean cooking fuel and energy for lighting, while the slurry used as organic fertilizers to improve vegetable yields. The social, economic and environmental impacts of the project will empower the vulnerable women and children within the slums and reduce water pollution and land degradation. This affordable project can be applied in developing countries experiencing slum settlement challenges as a strategy for reducing urbanization pressure.

Utilization of Crawfish Processing Wastes as Carotenoids, Chitin, and Chitosan Sources (캐로티노이드 , 키틴, 키토산의 원료로서 Crawfish 가공 폐기물의 이용)

  • No, hong-Hyoon;Samuel P.Meyers
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 1992
  • The Louisiana crawfish industry comprises the largest concentration of crustacean aquaculture in the United States. Processing plants throughout the culture region annually generate as much as 80 million pounds of peeling waste during recovery of the 15% (by weight) edible tail meat. A commercial oil extraction process for recovery of carotenoid astaxanthin from crawfish waste has been developed. Crawfish pigment in its various forms finds applications as a source of red intensifying agents for use in aquaculture and poultry industries. Crawfish shell, separated in the initial pigment extraction step, is an excellent source of chitin. Applicable physicochemical procedures for isolation of chitin from crawfish shell and its conversion to chitosan have been developed. Crawfish chitosan has been demonstrated to be both an effective coagulant and ligand-exchange column material , respectively, for recovery of valuable organic compounds from seafood processing wastewater.

  • PDF

Preliminary Characterization of Keratinolytic Enzyme of Aspergillus flavus K-03 and Its Potential in Biodegradation of Keratin Wastes

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.209-213
    • /
    • 2003
  • Aspergillus flavus K-03 isolated from poultry forming soil in Korea was studied for its ability to produce extracellular proteases on basal medium containing 2%(w/v) chicken feathers. The fungus was observed to be a potent producer of such enzymes. Keratinolytic enzyme secretion was the best at 15 days of incubation period at pH 9 and temperature $40^{\circ}C$. No relationship existed between the enzyme yield and increase of biomass. Enzyme production was suppressed by exogenous sugars in descending order arabinose>maltose>mannose>fructose. But glucose did not influence the enzyme activity. The keratinolytic enzyme released by the fungus demonstrated the ability to decompose keratin substrates as chicken feather when exogenous glucose was present. The keratinolytic activity was inhibited by $HgCl_2$ and serine-protease inhibitors such as phenymethylsulfonyl fluoride(100%), chymostain(88%), crystalline soybean trypsin inhibtor(80%), antipain(45%) and aprotinin(40%), and was not by cystein-protease and aspartyl-protease inhibitors. The enzyme activity is only partially inhibited by metallo-protease inhibitor. Thus, the enzyme secreted by A. flavus K-03 belongs to the alkaline serine-type protease.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Isolation and Identification of Feather-Degrading Bacteria for Biotechnological Applications of Keratinaceous Protein Waste (케라틴 단백질 폐기물의 생물공학적 적용을 위한 우모 분해세균의 분리 및 동정)

  • 손홍주;김용균;박연규
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.229-234
    • /
    • 2004
  • Feathers, which are almost pure keratin protein, are produced in large amounts as a waste by-product at poultry-processing plants. Keratinolytic enzymes may have important uses in biotechnological processes involving keratin-containing wastes from poultry and leather processes. In this study, screening and identification of keratin-degrading bacteria were investigated. Five keratin-degrading bacterial strains (F3-1, F3-4, F7-1, C1-1, C1-2) were isolated from compost and decayed chicken feather. On the basis of morphological, physiological studies, and Biolog system, all isolates were identified as the genus Bacillus. Among them, the strain F7-1 had the highest feather-degrading activity and was selected for further taxonomical study. Phylogenetic analysis of strain F7-1 based on comparison of 165 rDNA sequences revealed that this strain is closely related to Bacillus megaterium.

Production and Characterization of Keratinolytic Proteases by a Chicken Feather-Degrading Thermophilic Strain, Thermoactinomyces sp. YT06

  • Wang, Lin;Qian, Yuting;Cao, Yun;Huang, Ying;Chang, Zhizhou;Huang, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2190-2198
    • /
    • 2017
  • Thermoactinomyces sp. strain YT06 was isolated from poultry compost and observed to degrade integral chicken feathers completely at $60^{\circ}C$, resulting in the formation of 3.24 mg/ml of free amino acids from 50 ml of culture containing 10 g/l chicken feathers. Strain YT06 could grow and secrete keratinase using feather as the only carbon and nitrogen sources without other supplement, but complementation of 10 g/l sucrose and 4 g/l $NaNO_3$ increased the production of the keratinolytic enzyme. The maximum protease activity obtained was 110 U/ml and for keratinase was 42 U/ml. The keratinase maintained active status over a broad pH (pH 8-11) and temperature ($60-75^{\circ}C$). It was inhibited by serine protease inhibitors and most metal ions; however, it could be stimulated by $Mn^{2+}$ and the surfactant Tween-20. A reductive agent (${\beta}$-mercaptoethanol) was observed to cleave the disulfide bond of keratin and improve the access of the enzyme to the keratinaceous substrate. Zymogram analysis showed that strain YT06 primarily secreted keratinase with a molecular mass of approximately 35 kDa. The active band was assessed by MALDI-TOF mass spectrometry and was observed to be completely identical to an alkaline serine protease from Thermoactinomyces sp. Gus2-1. Thermoactinomyces sp. strain YT06 shows great potential as a novel candidate in enzymatic processing of hard-to-degrade proteins into high-value products, such as keratinous wastes.

Isolation and Characterization of a Feather-Degrading Bacterium for Recycling of Keratinous Protein Waste (케라틴 단백질 폐기물의 재활용을 위한 우모부해 세균의 분리와 특성)

  • Kim, Jung-Chul;Kim, Min-Ju;Son, Hyeng-Sik;Ryu, Eun-Youn;Jeong, Seong-Yun;Kim, Mi-A;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1337-1343
    • /
    • 2007
  • The aim of this study was to isolate chicken feather-degrading bacteria with high keratinolytic activity and to investigate cultural conditions affecting keratinolytic enzyme production by a selected isolate. A chicken feather-degrading bacterial strain CH3 was isolated from poultry wastes. Isolate CH3 degraded whole chicken feather completely within 3 days. On the basis of phenotypical and 16S rDNA studies, isolate CH3 was identified as Bacillus thuringiensis CH3. This strain is the first B. thuringiensis described as a feather degrader. The bacterium grew with an optimum at pH 8.0 and $37^{\circ}C$, where maximum keratinolytic activity was also observed. The composition of optimal medium for keratinolytic enzyme production was feather 0.1%, sucrose 0.7%, casein 0.3%, $K_2HPO_4$ 0.03%, $KH_2PO_4$ 0.04%, $MgCl_2$ 0.01% and NaCl 0.05%, respectively. The keratinolytic enzyme had a pH and temperature optima 9.0 and $45^{\circ}C$, respectively. The keratinolytic activity was inhibited ethylenediaminetetraacetic acid, phenylmethylsulfonyl fluoride, and metal ions like $Hg^{2+},\;Cu^{2+}\;and\;Zn^{2+}$. The enzyme activated by $Fe^{2+}$, dithiothreitol and 2-mercaptoethanol.

Amino Acids in Humic Acids Extracted from Organic By-product Fertilizers (유기질 부산물 비료에서 추출한 부식산 중 아미노산 특성)

  • Yang, Jae-E.;Kim, Jeong-Je;Shin, Myung-Kyo;Park, Yong-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.128-136
    • /
    • 1998
  • Most of total nitrogen in the surface soil exists in organic forms, of which amino acid-N is the major fraction. By-product fertilizers provide soil with humic substances, and humic acid is an essential component of humus. Amino acids(AAs) are easily converted to inorganic-N forms and thus play an important role in N fertility. This experiment was conducted to investigate the contents and distributions of AAs in humic acids which were extracted from the commercial by-product fertilizers of different composting materials. Total contents of AAs in humic acids ranged from 1.2 to 5.6%, of which neutral AAs were the highest with ranges of 0.8~4.5%. AAs contents in fertilizers composted from the plant residues such as leaf litter, sawdust and bark were in an order of neutral>acidic>basic AAs. In contrast, those from animal wastes, such as poultry and pig manures, were in an order of neutral>basic>acidic AAs. Distributions of total, acidic and neutral AAs were in the respective order of leaf litter>sawdust>pig manure>poultry manure>peat, bark>sawdust>leaf litter>peat and leaf litter>sawdust>bark>peat. Distributions of the basic AAs were in the reversed order of the acidic AAs. In bark fertilizer with increasing compost maturity, contents of the acidic AAs were increased in compensation for the decreases in those of neutral and basic AAs. Results demonstrated that distributions of amino acids in humic acid of by-product fertilizers were different from composting raw materials and degrees of humification.

  • PDF

A Study on the Reducing Pollutants in Non-Ruminant Manure by Increasing Feed Utilization (사료이용율 증가에 따른 비반추가축의 분뇨에 의한 공해발생 감소에 관한 연구)

  • Nahm, K.H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.3
    • /
    • pp.245-257
    • /
    • 2001
  • Localization of livestock facilities leads to concentration of livestock wastes and subsequent leakage of pollutants into the environment, resulting in public concern about their effects. Nitrogen (N) and phosphorus (P) are the most harmful components of animal manure, but odor from the manure itself and the livestock facilities is also a problem. Improving the nutrient efficiency of the livestock helps to decrease excretion of these environmental contaminants. Pigs and chickens are the main experimental models used in studies to improve nutrient efficiency. Addition of feed supplements and modifying feeding systems to improve nutrient efficiency can result in significant decrease in the N, P, odor and dry matter (DM) weight of manure. Examples of these methods include the following. 1) Addition of synthetic amino acids and reducing protein contents resulted N reductions of 10∼27% in broilers, 18∼35% in chicks and layers, 19∼62% in pigs, and a 9∼43% reduction in odor in pigs. 2) Enzyme supplementation resulted in a 12∼15% reduction in DM weight in broiler manure. 3) Phvtase supplementation resulted in P reductions of 25∼35% in chickens and 20∼60% in pigs. 4) Use of growth promoting substances resulted in a 5∼30% reduction in N and a 53∼56% reduction in odor of pigs. 5) Formulating diets closer to requirements (diet modification) reduced N and P by 10∼15% each in chickens and pigs, and odor by 28∼ 79% in pigs. 6) Phase feeding reduced N and P excretion by chicken and pigs from 10∼33% and 10∼13% each, as well as odor in growing and finishing pigs by 49∼79%. 7) Use of highly digestible raw materials in feed reduced N and P excretion by 5% in chickens and pigs.

  • PDF

The Study on Treatment of Poultry Waste by Earthworms, and the Effect of Feeding Earthworms Meal on the Performance of Broilers and Laying Hens, and Safety of Meat and Egg (지렁이를 이용한 계분처리 그리고 지렁이를 이용한 계육 및 계란의 생산과 안전성에 관한 연구)

  • Son, Jang-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.63-82
    • /
    • 2009
  • This review was conducted to the study on treatment of poultry waste by earthworms, and the effect of feeding earthworms meal on the performance of broilers and laying hens, and safety of meat and egg. 1. The pro-environmental chicken house was building in Daegu National University of Education, Daegu city, chicken wastes will be turn into high quality compost by vermicomposting uses earthworms in the house. 2. The earthworm meal (EWM) has a high proteinic content and a balanced amino acid and fatty acid profile, therefore most feeding applications has been evaluated with mono-gastric animals. 3. The dietary supplementations of 0.2 to 0.4% EWM were effective in improve digestibility of crude protein of diet resulted improved broiler performance in broiler chickens. 4. The supplementing 0.2 to 0.6% of earthworm meal in the laying hens diet, improves the laying performance and egg quality, especially ratio of egg yolk n-6/n-3 fatty acids contents. 5. As, Cd, Cr, Hg and Pb were detected at level of 4.41, 1.23, 1.18, 0.00 and 3.39ppm in earthworm meal, respectively, but those were not detected in the chicken meat and egg. therefore supplementing 0.6% of EWM in the chicken diet, it still did not affect meat and egg safety. 6. These results indicated that vermicompositing uses earthworms good a subject matter in the pro-environmental animal husbandry.

  • PDF