• Title/Summary/Keyword: Potyviruses

Search Result 33, Processing Time 0.025 seconds

Interaction Study of Soybean mosaic virus Proteins with Soybean Proteins using the Yeast-Two Hybrid System

  • Seo, Jang-Kyun;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Lee, Su-Heon;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Interactions between viral proteins and host proteins are essential for virus replication. Especially, translation of viral genes completely depends on the host machinery. In potyviruses, interactions of genome-linked viral protein (VPg) with host translation factors including eIF4E, eIF(iso)4E, and poly(A)-binding protein (PABP) has previously been characterized. In this study, we investigated interactions between Soybean mosaic virus (SMV) viral proteins and host translation factors by yeast two-hybrid system. SMV VPg interacted with eIF4E, eIF(iso)4E, and PABP in yeast two-hybrid system, while SMV helper component proteinase (HC-pro) interacted with neither of those proteins. The interaction between SMV NIb and PABP was also detected. These results are consistent with those reported previously in other potyviruses. Interestingly, we found reproducible and specific interactions between SMV coat protein (CP) and PABP. Deletion analysis showed that the region of CP comprising amino acids 116 to 206 and the region of PABP comprising amino acids 520 to 580 are involved in CP/PABP interactions. Soybean library screening with SMV NIb by yeast two-hybrid assay also identified several soybean proteins including chlorophyll a/b binding preprotein, photo-system I-N subunit, ribulose 1,5-biphosphate carboxylase, ST-LSI protein, translation initiation factor 1, TIR-NBS type R protein, RNA binding protein, ubiquitin, and LRR protein kinase. Altogether, these results suggest that potyviral replicase may comprise a multi-protein complex with PABP, CP, and other host factors.

Wisteria Vein Mosaic Virus Detected for the First Time in Iran from an Unknown Host by Analysis of Aphid Vectors

  • Valouzi, Hajar;Hashemi, Seyedeh-Shahrzad;Wylie, Stephen J.;Ahadiyat, Ali;Golnaraghi, Alireza
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.87-97
    • /
    • 2020
  • The development of reverse transcription-polymerase chain reaction using degenerate primers against conserved regions of most potyviral genomes enabled sampling of the potyvirome. However, these assays usually involve sampling potential host plants, but identifying infected plants when they are asymptomatic is challenging, and many plants, especially wild ones, contain inhibitors to DNA amplification. We used an alternative approach which utilized aphid vectors and indicator plants to identify potyviruses capable of infecting common bean (Phaseolus vulgaris). Aphids were collected from a range of asymptomatic leguminous weeds and trees in Iran, and transferred to bean seedlings under controlled conditions. Bean plants were tested serologically for potyvirus infections four-weeks postinoculation. The serological assay and symptomatology together indicated the presence of one potyvirus, and symptomology alone implied the presence of an unidentified virus. The partial genome of the potyvirus, encompassing the complete coat protein gene, was amplified using generic potyvirus primers. Sequence analysis of the amplicon confirmed the presence of an isolate of Wisteria vein mosaic virus (WVMV), a virus species not previously identified from Western Asia. Phylogenetic analyses of available WVMV sequences categorized them into five groups: East Asian-1 to 3, North American and World. The Iranian isolate clustered with those in the World group. Multiple sequence alignment indicated the presence of some genogroup-specific amino acid substitutions among the isolates studied. Chinese isolates were sister groups of other isolates and showed higher nucleotide distances as compared with the others, suggesting a possible Eastern-Asian origin of WVMV, the main region where Wisteria might have originated.

Molecular Identification and Sequence Analysis of Coat Protein Gene of Ornithogalum mosaic virus Isolated from Iris Plant

  • Yoon, Hye-In;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.251-258
    • /
    • 2002
  • A potyvirus was isolated from cultivated Iris plants showing leaf streak mosaic symptom. Reverse transcription and polymerase chain reaction (RT-PCR) product of 1 kb long which encoded partial nuclear inclusion B and N-terminal region of viral coat protein (CP) genes for potyviruses was successfully amplified with a set of potyvirus-specific degenerate primers with viral RNA samples from the infected leaves: The RT-PCR product was cloned into the plasmid vector and its nucleotide sequences were determined. The nucleotide sequence of a CDNA clone revealed that the virus was an isolate of Ornithogalum moseic virus (OrMV) based on BLAST search analysis and was denoted as OrMV Korean isolate (OrMV-Ky). To further characterize the CP gene of the virus, a pair of OrMV-specific primers was designed and used for amplification of the entire CP gene of OrMV-Kr, The virus was easily and reliably detected from virus-infected Iris leaves by using the RT-PCR with the set of virus-specific primers. The RT-PCR product of the CP gene of the virus was cloned and its sequences were determined from selected recombinant CDNA clones. Sequence analysis revealed that the CP of OrMV-Kr consisted of 762 nucleotides, which encoded 253 amino acid residues. The CP of OrMV-Ky has 94.1-98.0% amino acid sequence identities (20 amino acid alterations) with that of other three isolates of OrMV, Two NT rich potential N-glycosylation motif sequences, NCTS and NWTM, and a DAC triple box responsible for aphid transmission were conserved in CPs of all the strains of OrMV. The virus has 58.5-86.2% amino acid sequence identities with that of other 16 potyviruses, indicating OrMV to be a distinct species of the genus. OrMV-Ky was the most related with Pterostylia virus Yin the phylogenetic tree analysis of CP at the amino acid level. This is the first report on the occurrence of OrMV in Iris plants in Korea. Data in this study indicate that OrMV is found in cultivated Iris plants, and may have mixed infection of OrMV and Iris severe mosaic virus in Korea.

Japanese Hornwort Mosaic Virus in Ornamental Flower and Its Phylogenetic Analysis with Other Potyvirusess.

  • Kim, Ok-Sun;Ueda, S;Ebihara, Y.;Uematsu, S.;Hanada, K.;Ohshima, K.;Iwanami, T.;Takanami, Y.;Choi, Jang-Kyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.142-143
    • /
    • 2003
  • Ammi majus (white lace flower, Unbelliferae) is an ornamental plant used for cut-flower arrangements worldwide. A potyvirus was isolated from its leaves with mosaic and chlorotic symptoms in the cultivated field of Chiba, Japan. Compared with Japanese homuort mosaic virus (JHMV) previously isolated from Cryptotaenia japonica, it showed similar characteristics in host reactions and molecular properties. The nucleotide sequences of coat protein and 3'- nontranslated region were highly homologous and shared 87% and 91% identities with those of JHMV, respectively. This virus was thus supposed to be an isolate of JHMV and designated as JHMV-Am. Phylogenetic tree was constructed using CP nucleotide sequences of the two isolates and other potyviruses previously reported. JHMV-Am and JHMV fell into a cluster with Korean strain of Zantedeschia mosaic virus (ZaMV-KR). However, low identity in amino acid sequences was found in the termini of CP genes between the two isolates of JHMV and ZaMV-KR.

  • PDF

Nucleotide Sequence Analysis and Secondary Structure Modeling of the 3'-Noncoding Regions of Two Korean Strains of Turnip Mosaic Virus (순무 모자이크 바이러스 두 한국계통의 3' 말단 비번역부위에 대한 염기서열분석 및 2차구조 모델링)

  • 최장경;류기현;최국선;박원목
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.271-277
    • /
    • 1995
  • The RNA nucleotide sequences of the 3/-noncoding regions (3'-NCRs) of two Korean strains of turnip mosaic virus (TuMV), Ca and cqs, have been determined from their cDNA clones that encompassed the 3'-terminal regions of the viral genomic RNAs. The 3'-NCRs of both strains were 209 nucleotides long, terminated with GAC residues and poly (A) tails. The potential polyadenylational signal motif, UAUGU, was located 140 nucleotides upstream from the poly (A) tail in each of the virus. A highly conserved hexanucleotide sequence [A G U G A/U G/C], which was common in the 3'-NCRs of the potyvirus RNAs, was also found at the regions of 119 bases upstream from the 3'-end. Comparison of the 3'-NCRs of the two Korean isolates with those of four strains from Canada, China and Japan showed significantly identical genotypes (94.3∼99.5%). The secondary structure of three loops with long stems was found within the 3'-NCRs by sequence analysis. The substituted bases in the region among the six TuMV strains did not alter their secondary structures. Length of the 3'-NCRs of the know 11 potyviral RNAs and TuMV RNAs was different from one another and their nucleotide sequences showed 55.7% to 24.0% of homology. The 3'-NCR, therefore, is considered to be useful for phylogenetic studies in potyviruses.

  • PDF

New Host Plants of Turnip Mosaic Potyvirus in Korea (순무 모자이크 바이러스(TuMV)의 새로운 기주식물 탐색)

  • 최준근;윤주연;이세원;최장경
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.625-629
    • /
    • 1998
  • Turnip mosaic potyviruses (TuMV) were isolated from Rorippa indica and Armoracia lapathifolia showing mosaic symptoms in field. Identification of the TuMVs were carried out by host reactions of indicator plants, electron micrograph, serological properties and reverse transcription-poly-merase chain reaction (RT-PCR). Both viruses systemically infected Chenopodium quinoa, Nicotiana clevelandii, Brassica rapa, B. campestris subsp. pekinensis, B. juncea and Raphanus sativus, and developed local infection on inoculated leaves of C. quinoa, C. amaranticola, C. album, N. tabacum cv. Xanthi nc and Gomphrena grobosa. However, the viruses did not infect on N. glutinosa, Cucumis sativus and Vigna unguiculata. The filamentous particles, about 720 nm in length, and inclusion bodies were observed from the infected leaf tissues by dipping on electron microscopy. Crude sap of leaf infected with the viruses was reacted positively with an antiserum of TuMV in agar gel double diffusion. For detection of the viruses, RT-PCR was carried out with TuMV--specfic oligonucleotide primer. The RT-PCR products, a 1,092 bp DNA fragment, were obtained from naturally infected leaves of R. indica and A. lapathifolia. In inoculation test to seven cruciferous weeds with TuMV, infection occurred in Arabis glabra, Barbarea orthoceras, Capsella bursa-pastoris, Draba nomorosa var. hebecarpa, Rorippa cantoniensis and Thlaspi arvense.

  • PDF

Analysis of the Complete Genome Sequence of Zucchini yellow mosaic virus strain A Isolated from Hollyhock

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Sohn, Seong-Han
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2007
  • The complete genome sequence of Zucchini yellow mosaic virus stain A (ZYMV-A) isolated from a hollyhock (Althaea rosea) was determined by using RT-PCR with a series of primer sets. The virus genome consisted of 9593 nucleotides (nt), excluding the poly(A) tract at 3' terminus of the virus genome, with 5' and 3' untranslated region of 139 and 211 nt, respectively. The deduced polyprotein of ZYMV-A consisted of 3080 amino acid (aa) residues and was 351 kDa in molecular weight. All proteolytic cleavage sites of the polyprotein of ZYMV-A were compared with those of ZYMV strains, which showed the cleavage sites were conserved among ZYMV strains. The HC-Pro contained the KITC and PTK motifs, and the DAG motif was located at CP ORF of ZYMV-A, suggesting that ZYMV-A is aphid-transmissible. Phylogenetic tree analysis based on the complete genome among ZYMV strains or CP ORFs with other potyviruses showed ZYMV strains formed a distinct group. These results clearly confirmed that ZYMV-A was another distinct strain in ZYMV population at molecular level.

Garlic Mite-borne Virus Isolated from Cultivated Garlic in Korea (한국산 마늘에서 분리된 응애전파성 바이러스)

  • 구봉진;장무웅;최양도
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 1998
  • Many cloves of native cultivated garlics in Korea were found to be infested by mites when observed with stereo-microscope. The mite was identified by light and scanning electron microscopic observation as Aceria tulipae. Surveying viruses from the vegetatively propagated garlic, highly flexuous, filamentous particles (700∼800 nm) were detected in Aceria tulipae, local lesions of Chenopodium murale after sap transmissions, mosaic garlic leaves inoculated with mite-borne virus by transmission of Aceria tulipae and naturally infected garlic leaves. The mite-borne virus isolated did not react with antisera of aphid-borne potyviruses (LYSV-G, LYSV-L, WoYSV) or carlavirus (GLV), but reacted with antisera of garlic mite-borne viruses (GV-C, GMbMV). In ultratin sections of mite-borne virus infected garlic tissues, aggregates of virus particles and membrane proliferations were found in the parenchyma cells, but cytoplasmic cylindrical inclusions were not observed. Heavily mite-infested plants showed streaking and malformation due to mite feeding. The mite-borne virus was identified as garlic mite-borne mosaic virus (GMbMV), the mite-borne genus Rymovirus of the Potyviridae by mite transmission, morphology of virus particles, serological relationships, host range, distribution pattern of virus particles and inclusion bodies in the infected cells. The results demonstrate that mite-borne virus is one of the major viruses infecting native cultivated garlic plants showing mosaic or streak symptoms in Korea.

  • PDF

Complete sequence of genome RNA of Pepper mottle virus Korean isolate

  • H.I. Yoon;J, Y. Yoon;Park, G.S.;Park, J.K.;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.147.2-148
    • /
    • 2003
  • Complete nucleotide sequence of genome RNA of a Korean isolate of Pepper mottle virus (PepMoV-Vb) from field-collected diseased paprika (Capsicum annuum var grossum) was determined in this study. Symptoms of isolates of PepMoV were divided largely into two groups, vein banding (Vb) and vein clearing (Vc) patterns. PepMoV-Vb RNA consists of 9,640 nucleotides excluding the poly(A) tail. A single open reading frame was identified beginning at nucleotide position 169 encoding a polyprotein of 3024 amino acids which is typical of the Potyvirus genus. The complete nucleotide sequence and coding regions of PepMoV-Vb were compared to that of 11 potyviruses within the genus Potyvirus. The overall nucleotide sequence identity was 94.7 and 94.1% identical to PepMoV-C and PepMoV-FL, respectively. Full-length cDNAs of PepMoV-Vbl were synthesized from purified viral RNAs by RT-PCR and their genome structure was analysed by RFLP analysis. This is the first report on complete nucleotide sequence of PepMoV isolated from paprika in Korea.

  • PDF

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Bae, Han-Hong;Kim, Joon-Ki;Lee, Cheol-Ho;Hong, Jin-Sung;Ju, Ho-Jong;Kim, Hong-Gi;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.