• Title/Summary/Keyword: Potentiostatic current transient

Search Result 5, Processing Time 0.015 seconds

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

Effect of Interaction between Lithium Ions on Lithium Transport : Analysis of Potentiostatic Current Transient Measured on $Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ Film Electrode ($Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ 박막 전극내의 리튬 이동에 미치는 리튬 이온들간의 상호작용의 영향 : $Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ 박막 전극의 정전압 전류추이곡선의 해석)

  • 정규남;변수일;김성우
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41-41
    • /
    • 2001
  • PDF

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

Study on the Steady-State and Dynamic Performance of Polymer Electrolyte Fuel Cells with the Changes of External and Self-Humidification Conditions (고분자 전해질 연료전지의 외부가습 및 지체가습 변화에 의한 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCS) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in the potentiostatic mode and EIS (electrochemical impedance spectroscopy). The I-V curves representing steady-state performance were obtained from OCV to 0.25 V, and the dynamic performance responses were obtained at some voltages. The effects of anodic external humidification were measured by varying relative humidity of hydrogen from 20% to 100% while dry air was supplied in the cathode. At the high voltage region, the performance became higher with the increase of the temperature, while at the low voltage region, the performance decreased with the increase of temperature. The EIS showed that ohmic losses were larger at the dry condition of membrane and the effects of mass transport losses increased remarkably when the external and self-humidification were high. The dynamic responses were also monitored by changing the voltage of the PEFC instantly. As the temperature increased, the current reached steady-state earlier. The self-humidification with the generated water delayed the stabilization of the current except for low voltage conditions.