• 제목/요약/키워드: Potentiodynamic test

검색결과 164건 처리시간 0.027초

Effects of Rare Earth Metals Addition and Aging Treatment on the Corrosion Resistance and Mechanical Properties of Super Duplex Stainless Steels

  • 박용수;김순태;이인성;송치복
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.309-309
    • /
    • 1999
  • Effects of rare earth metals addition and aging treatment on corrosion resistance and mechanical properties of super duplex stainless steels were investigated using optical/SEM/TEM metallographic examination, an X-ray diffraction test, a potentiodynamic anodic polarization test and a tensile test. The performance of the experimental alloy with 0.32% REM addition was compared with commercial super duplex stainless steel such as SAF 2507 when they were exposed to solution annealing heat treatment and aging treatment. The corrosion resistance in CF environments and mechanical properties of the experimental alloy were found superior to those of the commercial duplex stainless steel. The REM with larger atomic radii than those of Cr, Mo and W may fill vacancies inside the matrix and around the grain boundaries, retarding formation of harmful intermetallic σ and χ phases. In addition, fine REM oxides/oxy-sulfides (1-3㎛) seemed to enhance the retardation effects. With REM additions, strength and ductility increased due to the phase and grain refinement caused by fine REM oxides and oxy-sulfides.

알루미늄 6061-T6 합금에 대한 양극산화층이 해수 내 부식 및 응력부식균열에 미치는 영향 (Effect on Anodizing Oxide Film for Aluminum 6061-T6 Alloy on Corrosion and Stress Corrosion Cracking in Seawater)

  • 신동호;황현규;정광후;김성종
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.219-226
    • /
    • 2020
  • This paper investigated the characteristics of anodized aluminum 6061-T6 alloy for corrosion and stress corrosion cracking(SCC) under natural seawater. The hard anodizing oxide film formed on the 6061-T6 was a uniform thickness of about 25 ㎛. The corrosion characteristics were performed with a potentiodynamic polarization test. SCC was characterized by a slow strain rate tensile test under 0.005mm/min rate. As a result, the anodizing film showed no significant effect on SCC in the slow strain rate test. However, the corrosion current density of base metal was measured to be approximately 13 times higher than that of the anodized specimen. Therefore, the anodizing film significantly improved the corrosion resistance of 6061-T6 alloy in natural seawater.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성 (Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

스테인리스강의 미세 전해 가공 시 전극 전위의 선정 (Determination of Electrode Potential in Micro Electrochemical Machining of Stainless Steel)

  • 박병진;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1281-1284
    • /
    • 2005
  • In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. Generally, the stainless steel electrode corrodes, passivates or dissolves in the electrochemical cell according to the electrode potential. Therefore, the electrode must maintain stable potential. The stable electrode potentials of tool and workpiece were determined with the potentiodynamic polarization test and verified experimentally from the point of machining stability and machined surface quality.

  • PDF

부동화 금속의 미세 전해 가공 시 전극 전위의 선정 (Determination of Electrode Potential in Micro Electrochemical Machining of Passive Metals)

  • 남호성;김보현;주종남;박병진
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.146-152
    • /
    • 2006
  • In micro electrochemical machining (ECM), electrodes should be prevented from unfavorable oxide and Passive layer formation on the machined surface or overall corrosion of the entire surface. Generally, metal electrodes corrode, passivate or dissolve in the electrochemical cell according to the electrode potential. Therefore, each electrode must maintain its stable potential. Tn this paper, the stable electrode potentials of tool and workpiece were determined using the potentiodynamic polarization test and verified experimentally considering machining stability and surface quality. Stable workpiece electrode potentials of two different passive materials of 304 stainless steel and nickel were determined in the 0.1 M sulfuric acid. Experimental results show good machined surface and fast machining rate using the determined electrode potentials.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

The Enhancement of Corrosion Resistance for WC-Co by Ion Beam Mixed Silicon Carbide Coating

  • 여순목;김동진;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.101-101
    • /
    • 2010
  • A strong adhesion of a silicon carbide (SiC) coating on a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In the case of 1 M NaOH solution, a corrosion current density for a SiC coated WC-Co with a heat treatment at $500^{\circ}C$ displays about 50 times lower than that for the as-received WC-Co. However, in the case of 0.5 M H2SO4 solution, a corrosion current density for a SiC coated WC-Co displays about 3 times lower than that for as-received WC-Co. We discussed the physical reasons for the changes of the corrosion current densities at the different electrolytes.

  • PDF

The Effects Nitrogen percentage and Processing Time on the AISI 420 martensitic stainless steel during Plasma nitriding

  • 이인섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.289-290
    • /
    • 2015
  • In this experiment, nitriding treatment has been performed at $400^{\circ}C$ with various $N_2$ content and with changing processing time on AISI 420 martensitic stainless steel to investigate the expanded martensite layer (${\alpha}^{\prime}_N$ layer) formation behavior. Nitriding was implemented with changing $N_2$ content from 10% to 25% for 15 hrs and processing time was changed from 4hr to 15hr at 25% $N_2$ content. After treatment, the behavior of the ${\alpha}^{\prime}_N$ layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. It was found that the surface hardness and ${\alpha}^{\prime}_N$ layer thickness increases with increasing $N_2$ percentage and processing time. Although their corrosion behaviors are worse than the bare sample.

  • PDF

산성비 분위기에서 교량용 강재 SWS400의 용접부 부식에 관한 연구 (A study of corrosion of welded bridge steel SWS400 in the acid-rain environment)

  • 정원석;김정구;이병훈
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.124-133
    • /
    • 1997
  • Corrosion behavior of welded SWS400 steel used for bridges was studied in a range of the acid-rain environment using immersion, potentiodynamic polartization, polarization resistance, and galvanic corrosion tests. The SWS400 steel exhibited active corrosion behavior in the range of acid-rain environment, i.e. no passivation. As the results of immersion corrosion test, Tafel extrapolation method, and polarization resistance measurement, the average corrosion rats of the steels were 0.31-0.72 mm/year in the pH of 4-5, and 0.17 mm/yera in the pH 6, respectively. The steel showed a resistance to corrosion in the pH 6. The observed active behavior of SWS400 steel in chloride-containing environment indicated that the chloride ions exerts a detrimental influence on the formation of passive films. Galvanic corrosion was observed between the weld and the base metals because the weld is anodic to the base metal.

  • PDF