• Title/Summary/Keyword: Potentiodynamic test

Search Result 164, Processing Time 0.029 seconds

The influence of impedance on micro electrochemical machining (마이크로 전해가공에서 임피던스의 영향)

  • 강성일;주종길;박규열;전종업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1893-1896
    • /
    • 2003
  • This research aimed to fabricate a micro structure using micro electrochemical machining (${\mu}$-ECM). with a view to that the theory of ${\mu}$-ECM is established accurately in a different way of conventional electrochemical machining. In details, if the impedance is existed in the system, it is difficult to analyze the micro electrochemical reaction efficiently in polarization curve using a potentiodynamic test. Hence, this research investigates the relationships between impedance and electric current measuring with a potentiostatic test applying to a pair or electrode as a constant potential. And this paper examines the influence of temperature of electrolyte on polarization curve for the quantitative analysis of electrochemical reactions.

  • PDF

A Study on Pitting Resistance of TiN Film Coated on Inconel 600 by CPP Test in High Temperature NaCl Solution (nconel 600위에 증착된 TiN 박막의 고온 NaCl 수용액에서의 CPP 실험에 의한 핏팅저항성의 연구)

  • 김용일;정한섭;김홍회;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1301-1307
    • /
    • 1995
  • Pitting corrosion of TiN film deposited on Inconel 600 by plasma assisted chemical vapor deposition (PACVD) was investigated. Cyclic potentiodynamic polarization (CPP) tests were conducted in order to determine the pit nucleation potentials, Enp, of the TiN-deposited sample and the bare Inconel 600 in deaerated NaCl solution at 25, 135 and 20$0^{\circ}C$. The effects of the TiN film thickness, the solution temperature and the Cl- concentration on Enp were studied. Enp of the TiN-deposited sample which had the film thickness above 1${\mu}{\textrm}{m}$ were higher than those of the bare Inconel 600 by 300~600mV at all the solution temperatures, implying the pitting resistance improvement of the TiN film. The morphologies of the pits generated after immersion test were examined with a scaning electron microscopy. The higher was the solution temperature, the more corrosion products, mainly composed of Cr and Ni oxides, were formed.

  • PDF

Effect of Aging Time on the Resistance to Localized Corrosion of the Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Kim, Ji-Soo;Kim, Kwang-Tae;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.209-215
    • /
    • 2010
  • To elucidate the effect of aging time on resistance to localized corrosion of hyper duplex stainless steel, a double-loop electrochemical potentiokinetic reactivation test a potentiodynamic anodic polarization test, a scanning electron microscope-energy dispersive spectroscope analysis, and a thermodynamic calculation were conducted. With an increase in aging time, sigma phases are precipitated much more than chi phases due to the meta-stable chi phase acting as a transition phase. As aging time at $850^{\circ}C$ increases, the corrosion resistance decreases owing to an increase in Cr, Mo and W depleted areas adjacent to the intermetallic phases such as sigma phases and chi phases.

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater (양극산화된 5083-H321 합금의 천연해수 내 전기화학적 부식 및 응력부식균열 특성에 관한 연구)

  • Hwang, Hyun-kyu;Shin, Dong-Ho;Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.259-264
    • /
    • 2020
  • Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.

Comparison of Electrochemical Corrosion Properties of Permanent Mold Casting GZ21 Alloy and AZ91 Alloy (금형 주조한 GZ21 합금과 AZ91 합금의 부식특성 비교)

  • Kim, Dae Han;Kim, Byeong Ho;Park, Kyung Chul;Chang, In Ki
    • Journal of Korea Foundry Society
    • /
    • v.36 no.2
    • /
    • pp.60-66
    • /
    • 2016
  • In this study, comparison of corrosion properties of the Mg-1.5Ge-1Zn (GZ21) alloy and Mg-9Al-1Zn (AZ91) alloy were investigated. The studied alloys were fabricated by permanent mold casting method. And the potentiodynamic test, hydrogen evolution test, immersion test and A.C Impedance test were carried out in a 3.5% NaCl solution with pH7.2 at room temperature to measure the corrosion properties. The microstructure of GZ21 alloy was composed of ${\alpha}-Mg$ and $Mg_2Ge$ phases and AZ91 alloy was composed of ${\alpha}-Mg$ and $Mg_{17}Al_{12}$ phases. From the test results, the corrosion property was improved by adding Ge. It seemed that the corrosion mechanism was changed from galvanic corrosion (AZ91) to filiform corrosion (GZ21).

Effects of Rare Earth Metal Addition on the Cavitation Erosion-Corrosion Resistance of Super Duplex Stainless Steels

  • 심성익;박용수;김순태;송치복
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.301-301
    • /
    • 1999
  • Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0,4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

Electrochemical Characteristics of Dental Implant in the Various Simulated Body Fluid and Artificial Saliva (다양한 유사체액과 인공타액에서 치과용 임플란트의 전기화학적 특성)

  • Kim, T.H.;Park, G.H.;Son, M.K.;Kim, W.G.;Jang, S.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.226-231
    • /
    • 2008
  • Titanium and its alloy have been widely used in dental implant and orthopedic prostheses. Electrochemical characteristics of dental implant in the various simulated body fluids have been researched by using electrochemical methods. Ti-6Al-4V alloy implant was used for corrosion test in 0.9% NaCl, artificial saliva and simulated body fluids. The surface morphology was observed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The electrochemical stability was investigated using potentiosat (EG&G Co, 263A). The corrosion surface was observed using scanning electron microscopy (SEM). From the results of potentiodynamic test in various solution, the current density of implant tested in SBF and AS solution was lower than that of implant tested in 0.9% NaCl solution. From the results of passive film stability test, the variation of current density at constant 250 mV showed the consistent with time in the case of implant tested in SBF and AS solution, whereas, the current density at constant 250mV in the case of implant tested in 0.9% NaCl solution showed higher compared to SBF and AS solution as time increased. From the results of cyclic potentiodynamic test, the pitting potential and |$E_{pit}\;-\;E_{corr}$| of implant tested in SBF and AS solution were higher than those of implant tested in 0.9% NaCl solution.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

A Study on the Galvanic Corrosion for Zirconium with Titanium and 316L Stainless Steel

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.285-289
    • /
    • 2013
  • The coastal area of Republic of Korea is very clean compared to other countries. In this reason, west coastal area of our country is a good place for breeding up a fish such as shrimp. In winter season, the heating system is required for preventing shrimp death caused by freezing in the farm. The heater in the heating system for fishery's farm is operated very severe combating corrosion due to high accumulation by feeding material and high temperature in heated sea water. Almost all manufactured heaters of STS 316L and Ti material are scrapped every year due to heavy corrosion such a general and crevice corrosion. For comparing the general and galvanic corrosion in new heater material, the test material of Zirconium (Zr), Titanium (Ti) and STS 316L are tested by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), current density-time methods and microscopic examination in a 3.5% NaCl solution. The corrosion potential (Ecor) measured by potentiodynamic polarization for Zr, Ti and STS 316L reveals -198, -250 and -450mV, corrosion current density 0.5, 2.5 and $6.5{\mu}A/cm^2$ respectively. The film resistance measured by EIS are Zr 63,000, Ti 39,700 and 316L $3,150{\Omega}$, and the current of Zr-Ti couple is $0.03{\mu}A$, whereas Zr-316L SS is $0.1{\mu}A$. According to the result of this experiment in 3.5% NaCl solution, Zr is excellent corrosion resistance material than Ti and STS 316L.