• 제목/요약/키워드: Potentiodynamic polarization test

검색결과 130건 처리시간 0.027초

Effect of Microstructure on Corrosion Behavior of TiN Hard Coatings Produced by Two Grid-Attached Magnetron Sputtering

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.15-22
    • /
    • 2006
  • The introduction of two-grid inside a conventional process system produces a reactive coating deposition and increases metal ion ratio in the plasma, resulting in denser and smoother films. The corrosion behaviors of TiN coatings were investigated by electrochemical methods, such as potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in deaerated 3.5% NaCl solution. Electrochemical tests were used to evaluate the effect of microstructure on the corrosion behavior of TiN coatings exposed to a corrosive environment. The crystal structure of the coatings was examined by X-ray diffractometry (XRD) and the microstructure of the coatings was investigated by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). In the potentiodynamic polarization test and EIS measurement, the corrosion current density of TiN deposited by two grid-attached magnetron sputtering was lower than TiN deposited by conventional magnetron type and also presented higher Rct values during 240 h immersion time. It is attributed to the formation of a dense microstructure, which promotes the compactness of coatings and yields lower porosity.

해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성 (Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater)

  • 김영복;김성종
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.292-299
    • /
    • 2019
  • The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

연속용융 도금라인 용 고내침식 Fe계 합금 개발 (Development of High Erosion Resistant Fe-based Alloy for Continuous Hot Dipping Line)

  • 백민숙;김용철;백경철;곽준섭;윤동주
    • 한국표면공학회지
    • /
    • 제53권3호
    • /
    • pp.95-103
    • /
    • 2020
  • In this study, the material used in the hot dip galvanizing equipment was poorly corrosion-resistant, so it was performed to solve the cost and time problems caused by equipment replacement. The theoretical calculation was performed using the DV-Xα method(Discrete Variational Local-density approximation method). The alloy (STS4XX series) of the equipment currently used has a martensite phase. Therefore, the theoretical calculation was performed by applying P4 / mmm, which is a tetragonal structure. The new alloy was chosen by designing theoretical values close to existing materials. Considering elements that contribute to corrosion, most have high prices. Therefore, the design was completed by adjusting the content using only the components of the reference material in the theoretical design. The final design alloys were chosen as D6 and D9. Designed D6 and D9 were dissolved and prepared using an induction furnace. After the heat treatment process was completed, the corrosion rate of the alloys was confirmed by using the potentiodynamic polarization test. The surface of the prepared alloys were processed horizontally and then polished to # 1200 using sand paper to perform potentiodynamic polarization test. Domestic products: 4.735 mpy (mils / year), D6: 0.9166 mpy, D9: 0.3372 mpy, alloys designed than domestic products had a lower corrosion rate. Therefore, the designed alloy was expected to have better erosion resistance.

해양환경 중에서 Glass Flake 라이닝 강재의 부식방지에 관한 연구 (A Study on the Corrosion Control of Glass Flake Lining for Mild Steel in Marine Environment)

  • 임우조;김성훈
    • 수산해양교육연구
    • /
    • 제12권2호
    • /
    • pp.164-175
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of Cl-. Generally, to protect these accidents, anti-corrosion paint and epoxy coating have been used. But they were still remained erosion-corrosion damage like impingement erosion, cavitation erosion and deposit attack. It is necessary to develope the new composite lining material in order to protective those corrosion damages. In this paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS400 were investigated by the electrochemical polarization test and the impingement-cavitation erosion test for corrosion behaviour under the sea water. The main results obtained are as follows ; 1) Epoxy coating appear potentiodynamic polarization behaviour, but polyester glass flake and vinylester glass flake lining do not appear potentiodynamic polarization behaviour. 2) Open circuit potential of polyester glass flake lining is more noble than that of epoxy coating and corrosion current density of polyester glass flake lining is less drained than that of epoxy coating in sea water. 3) Open circuit potential of vinylester glass flake lining is more noble than that of polyester glass flake lining and corrosion current density of vinylester glass flake lining is less drained than that of polyester glass flake lining in the sea water.

  • PDF

산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구 (Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments)

  • 한준희;;장영욱;김정구
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.558-566
    • /
    • 2009
  • The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Electrochemical Evaluation of Si-Incorporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications

  • Kim, Jung-Gu;Lee, Kwang-Ryeol;Kim, Young-Sik;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.18-23
    • /
    • 2007
  • DLC coatings have been deposited onto substrate of STS 316L and Ti alloy using r.f. PACVD (plasma-assisted chemical vapor deposition) with a mixture of $C_{6}H_{6}$ and $SiH_{4}$ as the process gases. Corrosion performance of DLC coatings was investigated by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy) and surface analysis (scanning electron microscopy). The electrolyte used in this test was a 0.89% NaCl solution of pH 7.4 at temperature $37^{\circ}C$. The porosity and protective efficiency of DLC coatings were obtained using potentiodynamic polarization test. Moreover, the delamination area and volume fraction of water uptake of DLC coatings as a function of immersion time were calculated using electrochemical impedance spectroscopy. This study provides the reliable and quantitative data for assessment of the effect of substrate on corrosion performance of Si-DLC coatings. The results showed that Si-DLC coating on Ti alloy could improve corrosion resistance more than that on STS 316L in the simulated body fluid environment. This could be attributed to the formation of a dense and low-porosity coating, which impedes the penetration of water and ions.

An Investigation of Mild Steel with Nitrogen-containing Inhibitor in Hydrochloric Acid

  • Horng, Y.T.;Tsai, Yi-Liang;Tu, Ching-Fang;Lee, Chien-Ming;Wei, F.I.;Shih, H.C.
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.233-237
    • /
    • 2003
  • Pickling inhibitors can be used to form an adsorbed layer on the metal surface to hinder the discharge of H^+$ and dissolution of metal ions. Nitrogen-containing inhibitors were selected as corrosion inhibitors for mild steel (MS) in pickling acid process. In this study, the addition of inhibitor, the pickling temperatures and the pickling times were the parameters to investigate the effects on the inhibition efficiency (IE) for MS by using weight loss measurement. Preliminary results show that the IE increased with the increase in pickling time from 10 minutes to 60 minutes, and the IE also increased with the increase in temperature at room temperature and $40^{\circ}C$. At the higher temperature. the IE values are higher and almost independent with the pickling time. Furthermore, the potentiodynamic polarization, open circuit corrosion potential-time and corrosion current-time studies show that nitorgen-containing inhibitor behaves predominantly as cathodic polarization. The roughness test and SEM investigation are also studied in this paper.

H2O2 산화제가 W/Ti 박막의 전기화학적 분극특성 및 CMP 성능에 미치는 영향 (Electrochemical Polarization Characteristics and Effect of the CMP Performances of Tungsten and Titanium Film by H2O2 Oxidizer)

  • 나은영;서용진;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.515-520
    • /
    • 2005
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. Also CMP process got into key process for global planarization in the chip manufacturing process. In this study, potentiodynamic polarization was carried out to investigate the influences of $H_2O_2$ concentration and metal oxide formation through the passivation on tungsten and titanium. Fortunately, the electrochemical behaviors of tungsten and titanium are similar, an one may expect. As an experimental result, electrochemical corrosion of the $5\;vol\%\;H_2O_2$ concentration of tungsten and titanium films was higher than the other concentrations. According to the analysis, the oxidation state and microstructure of surface layer were strongly influenced by different oxidizer concentration. Moreover, the oxidation kinetics and resulting chemical state of oxide layer played critical roles in determining the overall CMP performance. Therefore, we conclude that the CMP characteristics tungsten and titanium metal layer including surface roughness were strongly dependent on the amounts of hydrogen peroxide oxidizer.

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul;Krishna, S. Chenna;Venugopal, A.;Narayanan, P. Ramesh;Jha, Abhay K.;Ramkumar, P.;Venkitakrishnan, P.V.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.281-289
    • /
    • 2016
  • The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.