• 제목/요약/키워드: Potentiodynamic Polarization

검색결과 302건 처리시간 0.02초

주조 상태 및 용체화처리한 AZ91-4%RE 마그네슘 합금의 부식 거동 (Corrosion Behavior of As-Cast and Solution-Treated AZ91-4%RE Magnesium Alloy)

  • 한진구;현승균;전중환
    • 열처리공학회지
    • /
    • 제31권5호
    • /
    • pp.220-230
    • /
    • 2018
  • The objective of this study is to investigate the effect of solution treatment on the microstructure and corrosion behavior of cast AZ91-4%RE magnesium alloy. In the as-cast state, microstructure of the AZ91-4%RE alloy was characterized by intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_{11}RE_3$ and $Al_2RE$ phase particles distributed in ${\alpha}-(Mg)$ matrix. After solution treatment, the ${\beta}$ particles with low melting point dissolved into the matrix, but Al-RE phases still remained due to their high thermal stabilities. It was found from the immersion and potentiodynamic polarization tests that corrosion rate of the AZ91-4%RE alloy increased after the solution treatment. On the contrary, EIS tests and EDS compositional analyses on the surface corrosion products indicated that the stability of the corrosion product was improved after the solution treatment. Examinations on the corroded microstructures for the ascast and solution-treated samples revealed that dissolution of the ${\beta}$ particles which play a beneficial role in suppressing corrosion propagation, would be responsible for the deterioration of corrosion resistance after the solution treatment. This result implies that the microstructural features such as amount, size and distribution of secondary phases that determine corrosion mechanism, are more influential on the corrosion rate in comparison with the stability of surface corrosion product.

구연산 기반 구리-니켈 합금도금에 대한 분광학적/전기화학적 특성 연구 (Spectroscopic and Electrochemical Study on the Citrate-based CuNi Codeposition)

  • 이주열;임성봉;김만;정용수
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.117-123
    • /
    • 2011
  • We investigated the spectroscopic and electrochemical properties of the citrate-based CuNi solution at different solution pH and analyzed various surface properties of CuNi codeposition layer. By combining UV-Visible spectroscopic data with potentiodynamic polarization curves, it could be found that the complexation of $Ni^{2+}$-citrate pair was completed at lower solution pH than $Cu^{2+}$-citrate pair and was affected by the coexistent $Cu^{2+}$ ions, while the complexation between $Cu^{2+}$ ions and citrate was not sensitive to the presence of $Ni^{2+}$ ions. Also, the electron transfer from cathode to $Cu^{2+}$-citrate and$Ni^{2+}$-citrate was hindered by strong complexation between $Cu^{2+}/Ni^{2+}$ ions and citrate and so apparent codeposition current densities were reduced as the solution pH increases. CuNi codeposited layers had a higher Cu content when they were prepared at high pH solution due to the suppression of Ni deposition, and when codeposition was executed in an agitated condition due to the acceleration of mass transfer of $Cu^{2+}$ ions in the solution. Actually, solution pH had little effect on the surface morphology and deposits orientation, but greatly influenced the corrosion resistance in 3.5% NaCl solution by modifying the chemical composition of CuNi layers and so pH 3 was expected as the most suitable solution pH in the viewpoint of corrosion coatings.

지역난방 시스템의 순환수에 따른 보일러 튜브의 부식 특성 (Corrosion Behavior of Boiler Tube under Circulation Water Conditions in District Heating System)

  • 홍민기;조정민;송민지;김우철;하태백;이수열
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.287-291
    • /
    • 2018
  • In this study, corrosion behavior of a SA178-A alloy used in the boiler tube of a district heating system was investigated in different environments where it was exposed to pure water, district heating (DH) water, and filtered district heating (FDH) water. After the corrosion test, the surface morphology was examined for observation of the number of pitting sites and pitting area fraction, using a scanning electron microscope. The DH water and FDH water conditions resulted in a lower corrosion potential and pitting potential, and revealed a significantly higher corrosion rate than the pure water condition. The pitting sites in the DH water (pH 9.6) were approximately eighteen times larger than those in the pure water (pH 9.6). Compared to the DH water, the corrosion potential became more noble in the FDH water condition, where iron ions were reduced through filtration. However, the corrosion rate increased in the FDH water due to an increased concentration of chloride ions, which deteriorated the stability of passive film.

Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향 (Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys)

  • 오미영;김원기;최한철
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

슈퍼 듀플렉스 스테인리스강(UNS S32506) 레이저 조관용접 튜브의 용접 후 열처리에 따른 부식거동 (Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions)

  • 조동민;박진성;홍승갑;황중기;김성진
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.102-111
    • /
    • 2021
  • The corrosion behaviors of laser-welded super duplex stainless steel tubes with post-weld heat treatment(PWHT) conditions(950, 1000, 1050, 1100 ℃ for 5 and 30 min) were evaluated by electrochemical potentiodynamic polarization and critical pitting temperature measurements. This study showed that the critical metallurgical factors affecting the degradation of corrosion resistance of a steel tube in as-welded condition were the unbalanced phase fraction(ferrite:austenite = 94:4), Cr2N precipitation, and phase transformation from the austenite phase to ɛ-martensite(via stress-induced phase transformation). The improvement in the corrosion resistance of the welded specimen depends greatly on the PWHT conditions. The specimens after PWHT conducted below 1000 ℃ showed inferior corrosion resistance, caused by precipitation of the sigma phase enriched with Cr and Mo. At 1100 ℃ for a longer duration in PWHT, the ferrite phase grows, and its fraction increases, leading to an unbalanced phase fraction in the microstructure. As a result, pitting can be initiated primarily at the interface between the ferrite/austenite phase, particularly in base metal.

소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향 (Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel)

  • 윤덕빈;박진성;조동민;홍승갑;김성진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

가스 질화를 통한 316L스테인리스강의 내식성 개선 (Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding)

  • 조현빈;박세림;김지수;이정훈
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • 오스테나이트계 스테인리스강은 내식성 및 성형성이 양호하여 다양한 분야에 적용되며, 구리계의 합금을 용가재로 하는 브레이징을 통하여 다양한 형상의 제품으로 가공되어 활용되고 있다. 이때, 구리 기반의 용가재와 스테인리스강의 계면에서 갈바닉 셀을 형성하여 부식을 촉진할 수 있으며, 확산을 통해 스테인리스강에 고용 시 형성되는 구리 과다 영역(Cu-rich region)은 공식 발생의 기점이 되어 내식성을 저하시킨다. 본 연구에서는 브레이징이 적용된 스테인리스강의 내식성을 개선하고자, AISI 316L 스테인리스강에 암모니아 가스를 이용한 질화처리를 적용하였다. 질화처리한 시편은 처리 온도가 증가함에 따라 두께가 증가하고 표면 경도가 높아졌다. 동전위분극시험을 통해 내식성을 평가한 결과 질화층 내 고용된 질소의 용출 및 부동태 거동으로 모재대비 내식성이 개선되었지만 처리온도가 높아 크롬질화물(CrN) 분율이 증가하는 경우 내식성이 감소하였다.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Development of Zinc-Doped Titanium Dioxide Coatings with Enhanced Biocompatibility for Biomedical Application

  • Minseo Yu;Yo Han Song;Mi-Kyung Han
    • 한국재료학회지
    • /
    • 제34권8호
    • /
    • pp.377-386
    • /
    • 2024
  • The surface of titanium (Ti) dental implants was modified by applying a zinc (Zn)-doped titanium dioxide (TiO2) coating. Initially, the Ti surfaces were etched with NaOH, followed by a hydrolysis co-condensation using tetrabutyl titanate (TBT, Ti(OC4H9)4) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O), with ammonia water (NH3·H2O) acting as a hydroxide anion source. The morphology and chemical composition of the Zn-doped TiO2-coated Ti plates were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). Synthesis temperatures were carefully adjusted to produce anatase Zn-doped TiO2 nanoparticles with a bipyramidal structure and approximate sizes of 100 nm. Wettability tests and cell viability assays demonstrated the biomedical potential of these modified surfaces, which showed high biocompatibility with a survival rate of over 95 % (p < 0.05) and improved wettability. Corrosion resistance tests using potentiodynamic polarization reveal that Zn-TiO2-treated samples with an anatase crystal structure exhibited a lower corrosion current density and more noble corrosion potential compared to samples coated with a rutile structure. This method offers a scalable approach that could be adapted by the biomaterial industry to improve the functionality and longevity of various biomedical implants.

무도장 내후성강의 장기 내식성 및 그 현장즉시측정법 (Long-term corrosion-resistance of an uncoated weathering steel and its on-line and in-situ measurements)

  • 박정렬;김규영
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.415-423
    • /
    • 2004
  • 옥외 강구조물의 중요 소재인 무도장 내후성강의 장기 내식성을 평가하기 위해 우선 9년 이상 산업대기와 전원대기에 폭로된 본 강판 및 비교재 일반강판 시편의 천향면에 대해 중성의 인공우수에 침적시켜 전기화학적 부식전위, 임피던스 및 동전위 양분극 곡선으로 측정 및 그 결과를 고찰하였다. 산업대기 및 전원대기에 천향면으로 폭로된 내후성강 표면에는 부동태적인 안정화 녹층이 발달하였으며, 산업대기 폭로 표면의 인공우수에서의 부식속도는 $3{{\mu}m}/y$로 측정되어 우수한 내후내식 녹층으로 덮혀 있었다. 지속적으로 인공우수에 침적시키면 모든 시편 녹층은 점진적으로 열화되어 모재 철분의 양극산화용해 율속의 부식으로 진전됨을 나타내었다. 내후성 합금성분은 이런 부식의 진전을 지연시키고 있었다. 장기 내식성을 잘 평가하기 위해서는 9년보다 훨씬 장기간 대기폭로된 강재표면과 해당 대기 응축수 모사 수용액을 이용한 전기화학적 측정이 필요하다. 특히 본 측정방법들은 강재 표면의 원하는 부위와 폭로시간대에 거의 비파괴적으로 부식상황과 녹층의 상태와 정량적인 부식속도를 직접 바로 측정할 수 있게 하므로 강재를 사용한 교량, 탑, 건축물 등의 강구조물의 표면에 전기화학적 cell을 구성하고 이동측정기를 사용하면 강구조물의 내후 내식성을 현장즉시 측정 및 평가를 효과적으로 가능하게 할 수 있다.