• 제목/요약/키워드: Potential theory

검색결과 1,546건 처리시간 0.026초

An Astronomer's View on the Current College-Level Textbook Descriptions of Tides

  • Ahn, Kyung-Jin
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.671-681
    • /
    • 2009
  • In the equilibrium theory of tides by Newton, tide on the Earth is a phenomenon driven by differential gravity contributed both by the Sun and the Moon. Due to the direct link of the generic tidal effect to the oceanic tides, college students in the earth science education department are exposed to this theory through oceanography lectures as well as astronomy lectures. Common oceanography textbooks adopt a non-inertial reference frame fixed to the Earth in which the fictitious, centrifugal force appears. This has a potential risk to provide misconceptions among students in various aspects including the followings: 1) this is how Newton originally derived the equilibrium theory of tides, and 2) the tide is a phenomenon appearing only in rotating systems. We show that in astronomy, a much simpler description, which employs the inertial frame, is generally used to explain tides and thus causes less confusion. We argue that the description used in astronomy is preferable both in the viewpoints of simplicity and ease of interpretation. Moreover, on a historical basis, an inertial frame was adopted by Newton in Principia to explain tides. Thus, the description used in astronomy is consistent with Newton's original approach. We also present various astrophysical tides which do not comply with the concept of centrifugal force in general. We therefore argue that the description used in oceanography should be compensated by that in astronomy, due to its complexity, historical inconsistency and limited applicability.

복합체에 대한 연속체 방정식 및 유한요소 프로그램의 개발 (Development of Continuum Equations and Finite Element Method Program for Composite Systems)

  • 임종균;박문호
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.155-166
    • /
    • 1988
  • 본 연구는 복합체의 단부영향을 고려한 등각균등질, 이방성의 모델개발과 이에따른 유한요소해석 프로그램 개발에 중점을 두었다. 복합체는 2차원의 수평층을 가지며 선형, 탄성, 작은변형에 제한을 두었다. 본 연구에서 개발된 등가 균등질의 이론은 복합체의 전반적인 거동을 포함시킴은 물론 층과 수직인 경계면과 그 부근에 형성되는 단부의 영향과 층의 경계면에 생기는 응력집중 현상을 나타낼 수 있게 하였다. 이론개발에 있어 1차변수는 $C_0$연속의 유한요소 근사치를 가지도록 하였으며 이를위해 최고 1차의 미분치가 변형에너지에 나타나도록 변수를 택하였다. 결과적으로 유한요소해석은 매우 간단하고 경제적이었으며 이들의 정당성과 정확도를 입증하기위하여 여러하중 조건하의 복합체를 풀이하였다.

  • PDF

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

인터넷 포탈에 대한 자원 의존성이 온라인 쇼핑몰기업의 성장에 미치는 영향 (How does Dependence on Portals Help Online Retailers' Growth? : The Moderating Effects of Firm Age and Niche Width Strategy)

  • 박경민;문희진;박선주;정승화;최정혜
    • 한국경영과학회지
    • /
    • 제39권2호
    • /
    • pp.141-154
    • /
    • 2014
  • It is widely confirmed that online retailers can obtain crucial resources and greater growth potential by depending on the external web portal sites as it is explained in resource dependence theory. Nevertheless, recent studies show that the effect of dependence may not always be beneficial for firms and stress the importance of finding relevant contingent factors. In this study, we identify and suggest that firms' age and niche width strategy, whether generalist or specialist, are contributing factors on moderating the positive relationship between resource dependence and firm growth. To test our hypotheses based on the theory, we have collected monthly web traffic data of online retailers and portals from March 2000 and July 2008. The empirical results lend support to our theory of the firm age having a negative interaction effect on web traffic dependence. Moreover, results verified that positive effect of depending on the portals may become greater if the online retailer is a specialist in terms of niche width.

Expanding the aging self: Investigating successful aging among Korean older adults using grounded theory

  • Park, Hyung-Ran
    • 한국보건간호학회지
    • /
    • 제29권3호
    • /
    • pp.426-440
    • /
    • 2015
  • Purpose: This qualitative study aimed to understand older adults' perspectives on successful aging and develop a model of a successful aging process, within the Korean socio-cultural context. Methods: This study used a Grounded Theory approach. Through theoretical sampling, 14 participants were selected from older adults at a public health center and a volunteer institution in Gyeonggi Province, South Korea. Results: The basic social process identified was "expanding the aging self", which was preceded by three phases, namely, adjusting to the changes, developing the valuable self, and embracing the environment. Participants used 2-3 strategies for successful aging in each phase. For adjusting to the changes, participants used strategies such as "adopting a positive attitude", "accepting the changes", and "being at the center of life". To develop the valuable self, "re-identifying capacities", "having something to do", and "advancing to a healthy lifestyle" were used. Participants embraced their environments with "sharing with others" and "embracing younger generations". The causal condition for expanding the aging self was the changes in participants' physical, mental, or psychosocial situations. Conclusion: These findings suggest a theoretical foundation for the development of potential nursing interventions to promote self-care management and the interpersonal relationship for successful aging among Korean elderly individuals.

An Application of Affective-Cognitive Ambivalence Theory in Environmental Risk Attitude: The Case Study of Marion County, Ohio in the U.S.

  • Lee, Jae-Young;Lee, Hyon-Yong;Fortner, Rosanne W.
    • 한국지구과학회지
    • /
    • 제28권5호
    • /
    • pp.635-642
    • /
    • 2007
  • Using data from 132 telephone interviewees, we examined the role of affective-cognitive ambivalence in forming overall attitude and behavior toward toxic chemical and radioactive waste issues in Marion, Ohio in the U.S. In order to compare attitudinal preference, participants were divided into four A-C groups: action-group (Affective+/Cognitive+), detached-group (A-/C+), concerned-group (A+/C-), and inaction-group (A-/C-). Affective and cognitive components interacted, producing redundant influences on overall attitudes and judgments as frequently observed and postulated in previous attitude studies. The results showed that the action-group who were feeling unsafe and believed that environmental accidents had happened or are happening in Marion were less willing to move to the area than other three groups who were feeling safe and/or doubted reports of contamination and its relation with leukemia. Affective and cognitive components were found to have redundant influences on overall attitude. It was also observed that affective-cognitive ambivalence theory has a great potential for explaining the mechanism by which people form attitudes, especially when people have moderate or positive feelings (e.g. sympathy or eagerness for resources) toward the objects and/or when uncertainty is a major feature of environmental issue under consideration (e.g. global climate change).

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.