• Title/Summary/Keyword: Potential intensity

Search Result 747, Processing Time 0.02 seconds

Auditory Evoked Skin Potential in Normal Subjects (정상 성인에서 청성유발 피부전위)

  • Heo, Seung-Deok;Jung, Dong-Keun;Suh, Duk-Joon;Kim, Gwang-Nyeon;Kim, Gi-Ryon;Kang, Myung-Koo;Kim, Lee-Suk
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.81-88
    • /
    • 2005
  • Electrodermal activity(EDA) is a bio-electric signal which occurs at the skin surface during the sweating. EDA reflects the activity of the sympathetic axis of the autonomic nervous system. EDA is associated with the eccrine sweat gland at the palmar and plamar surface. This study was aimed to characterize the relationship between EDA and auditory stimulus intensities. Acoustic stimulus used in this study were 500 Hz, 1 kHz, 2 kHz of narrow band noise, which were representative of speech frequencies in audible range. Stimulus intensity between 90 and 30 dB in 10 dB within dynamic range. After deriving the minimum stimulus intensity(threshold of skin potential) which elicited skin potential, and then the latency and amplitude were derived from waveform of skin potential, each latency and amplitude were compared to stimulus intensity. The waveform of skin potential were recorded stably, and the threshold of skin potential appeared nearly the hearing threshold level of the participant. The latency was decreased and the amplitude was increased according to the increase of the stimulus intensity. These results suggest that auditory evoked skin potential can be applicable to auditory assessment and audiological diagnosis tool.

  • PDF

Weight Function Theory for Piezoelectric Materials with a Crack (균열을 가진 압전재료에서의 가중함수이론)

  • 손인호;안득만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.208-216
    • /
    • 2003
  • In this paper, a two-dimensional electroelastic analysis is performed on a piezoelectric material with an open crack. The approach of Lekhnitskii's complex potential functions is used in the derivation and Bueckner's weight function theory is extended to piezoelectric materials. The stress intensity factors and the electric displacement intensity factor are calculated by the weight function theory.

Effects of Soil Moisture on the Growth of Acer Palmatum under Indoor Low Light Intensity (실내의 저광도하에서 토양수분이 단풍나무의 생육에 미치는 영향)

  • 윤지영;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • This study is conducted to analyze effects of soil moisture on the growth of maple(Acer palmatum) under indoor low light intensity. Maples grew under three different light intensities such as sunny place(average 353.2W/$m^2$), half shade(average 7.7 W/$m^2$) and shade/(average 1.9W/$m^2$).Under half shady and shady condition, each 24 planters(2 maples planted in each planter) were used and divided into 3 groups treated with different watering points. Three levels of soil water potential were set for watering points, such as -200mbar, -300mbar or -500mbar. Under sunny condition, there were only group of 8 planters, as comparison. Watering was applied when soil water potentials reached -500maber. The results of plant growth experiment are as followed. 1. Under the shady condition, 32 maples died among 48 maples for 7 months. 9 maples survived, watered at soil water potential -200mbar, 5maples at -300mbar and 2maples at -500mbar. 2. Leaf water content ratios were higher under lower light intensity. For the cell wall became thinner under lower light intensity. 3. Maples in shady were easy to die due to having thin cell wall, therefore they were easy to loss the turgor pressure. 4. In case of half shady condition, the group, watered at soil water potential -200mbar, had much smaller amount of rootlet than -300mbar, because there were excessive soil water. The group, watered at soil water potential -500mbar, had smaller amount of rootlet than -300mbar and there was a remarkable difference in leaf water potential in spite of nearly same soil water potential, because leaves received the water stress under lower soil water potential. 5. When maples grew soundly, the leaf water potential was largely influenced by the soil water potential.

  • PDF

Determination of stress intensity factor by means of ACPD technique for ferromagnetic materials (교류전위차법에 의한 강자성체의 응력확대계수 결정)

  • Lee, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1392-1399
    • /
    • 1997
  • In order to determine the Mode I stress intensity factor ($K_1$) experimentally by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a ferromagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effect of the magnetic flux on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. To remove the magnetic flux, a new measuring system was made by utilizing the characteristic of coaxial transmission line. The change in potential drop in the case without magnetic flux in the air was caused by the change in electromagnetic properties near the crack tip due to magnetization. The relationship between the change in potential drop and the change in $K_I$ was linealized by demagnetization and was found to be independent of the crack length.

Mode I Field Intensity Factors of Infinitely Long Strip in Piezoelectric Media

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.845-850
    • /
    • 2000
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the framework of linear piezoelectricity. The potential theory method and Fourier transforms are used to reduce the problem to the solution of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the field intensity factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic are discussed.

  • PDF

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

Development of a potential evaluation method for urban expansion using GIS and RS technologies (GIS와 RS를 이용한 도시확산 포텐셜 평가기법의 개발)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.3 s.24
    • /
    • pp.41-51
    • /
    • 2004
  • This study aims to develop a potential evaluation method for urban spatial expansion using remote sensing (RS) and geographic information system (GIS). A multi-criteria evaluation method with several criteria and their weighting values was introduced to evaluate the score and quantification of the potential surface around the existing cities. The six criteria with one geographic factor, slope, and five accessibility factors, time distance from center of the city, national road, interchange of expressway, a big city, and station, were defined for the potential. RS techniques were applied for classification of the actual urban expansion maps between two periods, and GIS functions were used for score of accessibility criteria with a distance decay function from geographic, road and several point maps, which was developed in this study. The new methodology was applied to a test area, Suwon, between 1986 and 1996. In order to optimize the six weighting values, this study made new findings to search the optimal combination of the weighting values from new methodology, weighted scenario method for intensity order (WSM), combined with intensity order and AHP method, including a trial and error method for sensitivity analysis to make the intensity order. The optimal combination of the weighting values by the new method generated the optimal potential surface, considering spatial trend of urban expansion in the test area.

Effects of Three-Body Interactions on the Stability of Small Carbon Clusters (3체 인력이 탄소 cluster들의 안정도에 미치는 효과)

  • Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.86-92
    • /
    • 1991
  • A potential energy function comprising a two-body potential term which is modified form Morse potential and a three-body potential term which is modified from Axilrod-Teller potential has been developed for small carbon clusters. The structural changes of small carbon clusters $C_2-C_6$ are qualitatively investigated by employing this potential energy function representing the energies of the small carbon cluster isotopes as a function of the three body intensity factor. It is found that the structure of the small carbon cluster changes from open structure to closed one, from complicated structure to simple one, and from three-dimensional structure to two-or-one dimensional one as the degree of the three-body interaction increases.

  • PDF

Calculation of Stress Intensity Factor in Arbitrarily Shaped Plane Crack under Uniform Pressure Loading (일정 압력에 의한 3차원 평면균열에서의 응력확대계수 계산)

  • An, Deuk-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.117-122
    • /
    • 2000
  • In this paper the stress intensity factor under uniform pressure in the arbitrarily-shaped plane crack configuration transformed elliptic crack by Mobius mapping are determined. Using Dyson's formula Boussinesq-Papkovich potentials for mode I deformation are constructed. In the example the stress intensity factors are approximately calculated by least square method.

  • PDF

Weight Function Theory for Piezoelectric Materials with Crack in Anti-Plane Deformation (균열을 가진 압전재료에 대한 면외 변형에서의 가중함수이론)

  • Son, In-Ho;An, Deuk-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • In this paper, an electroelastic analysis is performed on a piezoelectric material with an open crack in anti-plane deformation. Bueckner’s weight function theory is extended to piezoelectric materials in anti-plane deformation. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.