• Title/Summary/Keyword: Potential gradient

Search Result 449, Processing Time 0.026 seconds

First-principles Study on the Half-metallicity and Magnetism of a Full Heusler Alloy, Co2HfSi, in Bulk State and at its (001) Surfaces

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.115-119
    • /
    • 2008
  • The authors predicted that $Co_2HfSi$, a $Co_2$-based full Heusler alloy, is being a half-metallic ferromagnet by first-principles calculations using the all electron full-potential linearized augmented plane wave method which adopts the generalized gradient approximation. The integer value of the calculated total magnetic moment of 2.00 ${\mu}_B$ per formula unit and a spin gap of 0.69 eV in spin down state confirmed the half-metallicity of bulk $Co_2HfSi$. For the $Co_2HfSi$(001) surface, we considered two possible surface terminations, namely, Co terminated and HfSi terminated surfaces. It was found that half-metallicity was retained at the HfSi-terminated surface but not at the Co-terminated surface. The magnetic moment of surface Co atoms in the Co-terminated surface was slightly lower than that of Co atoms in deep inner-layers, whereas the magnetic moments of Hf and Si atoms at the HfSi-terminated surface were almost same as those in deep inner-layers.

Magnetism and Magnetocrystalline Anisotropy at fcc Fe (001) Surface

  • Yun, Won-Seok;Cha, Gi-Beom;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.144-148
    • /
    • 2008
  • The size and surface effects on the magnetism of a fcc Fe (001) surface was investigated by performing firstprinciples calculations on 3, 5, 7, and 9 monolayers fcc Fe (001) single slabs with two different two-dimensional lattice constants, ${\alpha}=3.44{\AA}$ (System I) and 3.65 ${\AA}$ (System II), using the all-electron full-potential linearized augmented plane wave method within a generalized gradient approximation. The surface layers were coupled ferromagnetically to the subsurface layer in both systems. However, the magnetism of the inner layers was quite different from each other. While all the inner layers of System II were ferromagnetically coupled in the same way as the surface layer, the inner layers of System I showed a peculiar magnetism, bilayer antiferromagnetism. The calculated spin magnetic moments per Fe atom were approximately 2.7 and 2.9 ${\mu}_B$ at the surface for Systems I and II, respectively, due to the almost occupied Fe d-state being in the majority spin state and band narrowing. The spin orientations of System I were out-of-plane regardless of its thickness, whereas the orientation of System II changed from out-of-plane to in-plane with increasing thickness.

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

Study of Micro Propulsion System Based on Thermal Transpiration (열적발산원리를 이용한 마이크로 추진장치에 대한 연구)

  • Jung, Sung-Chul;Shin, Kang-Chang;Kim, Youn-Ho;Kim, Hye-Hwan;Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.25-29
    • /
    • 2007
  • Minimization of conventional propulsion device has been studied for altitude control of micro satellite. We studied micro nozzle performance and found higher significant loss for a micro nozzle with smaller nozzle throat diameter. To overcome this loss, we proposed thermal transpiration based micro propulsion system. This new system has no moving parts and can control flow by temperature gradient, and this can be an option for potential new micro propulsion system.

  • PDF

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

Numerical Study on High-Speed railway Tunnel Entrance Hood (고속철도 터널 입구후드에 관한 수치해석적 연구)

  • 김희동;김동현
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.604-611
    • /
    • 1998
  • High-speed railway trains entering and leaving tunnels generate finite amplitude pressure wave which propagate back and forth along the tunnels, reflecting at the open ends of the tunnels and at other discontinuities such as ventilation shafts and the train themselves. In present day railways, the magnitudes of the pressure waves are much too small to cause structual damage, but they are a serious potential source of aural discomport for passengers on unsealed trains. Almost always do the pressure waves propagating along the tunnels lead to a hazardous impulse noise near the exit portal of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Desirable hood shape for reduction of the pressure transients and impulse noise was found to be of abrupt type hood with its cross-sectional area 2.5times the tunnel area.

  • PDF

A Boundary Method for Shape Design Sensitivity Analysis in Shape Optimization Problems and its Application (경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용)

  • Kwak Hyun-Gu;Choi Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.255-263
    • /
    • 2005
  • This paper proposes an efficient boundary-based technique for the shape design sensitivity analysis in various disciplines. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in the problems. The formula can be conveniently used for gradient computation in a variety of shape design problems. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite. Perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The potential flow problems and fillet problem are chosen to illustrate the efficiency of the proposed methodology.

A First-principles Study on Magnetism of $Fe_2 /Ir_4$(001) Superlattice

  • Kim, Jae Il;Lee, In Gee
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.80-82
    • /
    • 2001
  • We have investigated magnetism of $Fe_2 /Ir_4$(001) superlattice in terms of a first-principles calculation by using an all-electron full-potential linearized augmented plane-wave (FLAPW) method within the generalized gradient approximation (GGA). We considered two magnetic states, the ferromagnetic (FM) and antiferromagnetic (AFM) coupled states between the Fe layers. It was found that the FM state was energetically more stable than the AFM one by 0.166 eV. Calculated magnetic moments of the Fe layers were, in absolute values, 2.45$\mu_B$ and 2.30 $\mu_B$for the FM and AFM states, respectively. We also found that the Ir layers had very small magnetic moments less than 0.1 $\mu_B$ for both magnetic states. In all the magnetic states, the subinterface Ir layers were coupled antiferromagnetically to the interface Ir layers, while the interface Ir layers were always coupled frerromagnetically to the interface Fe layers. These results contradicted to recent experimental reports of magnetically "dead"Fe layers in Fe/Ir superlattices for which the Fe layer thickness was less than two atomic layers. We attributed that the experimentally observed "dead"Fe layers were due to possible interdiffusion between Ir and Fe layers.en Ir and Fe layers.

  • PDF

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.