• 제목/요약/키워드: Potential energy (P)

검색결과 587건 처리시간 0.03초

이종혼합부유물질의 양에 따른 electrokinetic potential 및 surface energy profile의 변화 양상 (Variation of the Electrokinetic Potential and Surface Energy Profile of a Binary Mixture Dispersion with Mixing Ratio)

  • 김희진;정혜원;김동수
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.115-120
    • /
    • 2012
  • Different colloidal particles generally co-exist in the water and wastewater. Thus, there needs to identify practical electrokinetic characteristics of the particles, comparing with the case when each colloidal material is independently distributed. In this study, changes of overall zeta potential was examined through mixed dispersions of $TiO_{2}$ and $MnO_{2}$. The mixing ratios were classified into 3-type in order to distinguish the effects of the proportions of each particle from those of total concentration in colloidal suspensions. The types are single colloidal dispersions of $TiO_{2}$ and $MnO_{2}$ (1:0, 0:1), mixed dispersions at different ratios (0.75:0.25, 0.5:0.5, 0.25:0.75), and a mixed dispersion with doubled concentration (1:1), respectively. It showed that the overall variation of zeta potential as a function of pH was intensified in a colloidal dispersion with the ratio of 1:1. It was concerned that the double action of ion would contribute to this result. On the one hand, the zeta potentials of each colloidal dispersion commonly decreased at the state of strong acid and base under the influence of compression of the electric double layer. The changing patterns were also considered through calculating total interaction energy between colloidal particles based on DLVO theory and measuring turbidity of the colloidal dispersions.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Tin(Ⅱ)-Cupferron 착물에 대한 음극벗김전압전류법적 연구 (Cathodic Stripping Voltammetric Study of Tin(Ⅱ)-Cupferron Complex)

  • 손세철;서무열;지광용;최인규
    • 대한화학회지
    • /
    • 제39권1호
    • /
    • pp.23-28
    • /
    • 1995
  • Sn(II)-cupferron 착물에 대한 펄스차이 음극벗김 전압전류법적 연구를 pH 4.20의 0.1 M 아세트산 완충용액에서 수행하였다. 수은전극 표면에 흡착된 Sn(II)-cupferron 착물의 환원피크전류 크기에 미치는 용액의 pH, 착화제의 농도, 축적전위 및 축적시간의 영향을 검토하였다. 또한 Sn(II)-cupferron 착물의 환원피크전류에 영향을 주는 다른 금속 양이온들의 방해효과도 검토하였다. 이 방법에 의한 Sn(II)의 검출한계는 축적시간을 60 sec로 하였을 때 $3.1{\times}10^{-9}$ M(0.37 ppb)이었으며, $5{\times}10^{-8}$ M의 Sn(II) 분석에 대한 상대표준편차(n=8)는 3.0%이었다.

  • PDF

Biomass Production and Nutritive Potential of Conserved Forages in Silvopastoral Traditional Fodder Banks (Ngitiri) of Meatu District of Tanzania

  • Rubanza, C.D.K.;Shem, M.N.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.978-983
    • /
    • 2006
  • Forages from grazing lands comprise conventional feed resources for ruminants in the tropical region. A study was conducted to assess fodder productivity and nutritive potential of deferred forages of six silvopastoral traditional fodder banks in central northwest Tanzania, traditionally known as Ngitiri. The grazing lands were dominated by low quality increaser grass species: Eragrostis spp., Aristida spp., Urochloa spp., Rottboellia exaltata, Cenchrus spp., Cynodon spp. and Chloris spp., and forbs species. The grazing lands had low vegetative basal cover that varied (p<0.05) from 34.7 to 75%, and low forage biomass productivity that varied (p<0.05) from 0.76 to 3.69 tones (t) dry matter (DM)/ha. The forages contained low crude protein (CP) that varied (p<0.05) from 16 to 27 g/kg DM; and had high fibre contents, which varied (p<0.05) from 702-725, 497-573 and 119-225 g/kg DM for neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL), respectively. The forages were poorly degraded in sacco, and showed low DM degradability (DMD) characteristics of 74, 473 and 576 g/kg DM for DM washing losses (a), slowly degradable feed fraction (b) and potential degradability, (a+b), respectively; and low DMD at 48 h incubation, which varied from 317-345 g/kg DM, and contained low metabolizable energy (ME), (4.2-4.36 MJ/kg DM). The herbage forages would not meet protein and energy requirements for maintenance and production, which could be reflected through low animal productivity. Further work is needed to assess animal productivity (growth, milk, draft force) from conserved forages in traditional fodder banks in the dry season.

양이온 결손 La$_{0.970}$Mn$_{0.970}$O$_3$의 X-ray Photoemission Spectroscopy 관측 (X-ray Photoemission Spectroscopy Study of Cation-Deficient La$_{0.970}$Mn$_{0.970}$O$_3$ System)

  • 정우환
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.50-54
    • /
    • 1999
  • 양이온 결손 La0.970Mn0.970O3의 x-ray photoemission spectroscopy를 온도를 함수로 측정하였다. 온도의 변화에 따라서 Mn 2p와 3d core level의 화학적 변동 및 이동이 관측되었다. 즉 Mn 2p 3/2와 1/2 및 La 3d core 스펙트럼은 온도의 증가와 함께 저 결합 에너지 측으로 이동이 관측되었다. 이러한 XPS 관측 결과는 Mn3+의 localization의 강도 변화에 의한 것으로 사료되며, Mn3+에 의한 Jahn-Teller효과 이외에도 conventional random potential 효과 역시 La0.790Mn0.970O3의 전도 carrier의 localization에 기여하는 것으로 사료된다.

  • PDF

Phenolic Composition, Fermentation Profile, Protozoa Population and Methane Production from Sheanut (Butryospermum Parkii) Byproducts In vitro

  • Bhatta, Raghavendra;Mani, Saravanan;Baruah, Luna;Sampath, K.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1389-1394
    • /
    • 2012
  • Sheanut cake (SNC), expeller (SNE) and solvent extractions (SNSE) samples were evaluated to determine their suitability in animal feeding. The CP content was highest in SNSE (16.2%) followed by SNE (14.7%) and SNC (11.6%). However, metabolizable energy (ME, MJ/kg) was maximum in SNC (8.2) followed by SNE (7.9) and SNSE (7.0). The tannin phenol content was about 7.0 per cent and mostly in the form of hydrolyzable tannin (HT), whereas condensed tannin (CT) was less than one per cent. The in vitro gas production profiles indicated similar y max (maximum potential of gas production) among the 3 by-products. However, the rate of degradation (k) was maximum in SNC followed by SNE and SNSE. The $t^{1/2}$ (time taken for reaching half asymptote) was lowest in SNC (14.4 h) followed by SNE (18.7 h) and SNSE (21.9 h). The increment in the in vitro gas volume (ml/200 mg DM) with PEG (polyethylene glycol)-6000 (as a tannin binder) addition was 12.0 in SNC, 9.6 in SNE and 11.0 in SNSE, respectively. The highest ratio of $CH_4$ (ml) reduction per ml of the total gas, an indicator of the potential of tannin, was recorded in SNE (0.482) followed by SNC (0.301) and SNSE (0.261). There was significant (p<0.05) reduction in entodinia population and total protozoa population. Differential protozoa counts revealed that Entodinia populations increased to a greater extent than Holotricha when PEG was added. This is the first report on the antimethanogenic property of sheanut byproducts. It could be concluded that all the three forms of SN byproducts are medium source of protein and energy for ruminants. There is a great potential for SN by-products to be incorporated in ruminant feeding not only as a source of energy and protein, but also to protect the protein from rumen degradation and suppress enteric methanogenesis.

Stress intensity factors for 3-D axisymmetric bodies containing cracks by p-version of F.E.M.

  • Woo, Kwang S.;Jung, Woo S.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.245-256
    • /
    • 1994
  • A new axisymmetric crack model is proposed on the basis of p-version of the finite element method limited to theory of small scale yielding. To this end, axisymmetric stress element is formulated by integrals of Legendre polynomial which has hierarchical nature and orthogonality relationship. The virtual crack extension method has been adopted to calculate the stress intensity factors for 3-D axisymmetric cracked bodies where the potential energy change as a function of position along the crack front is calculated. The sensitivity with respect to the aspect ratio and Poisson locking has been tested to ascertain the robustness of p-version axisymmetric element. Also, the limit value that is an exact solution obtained by FEM when degree of freedom is infinite can be estimated using the extrapolation equation based on error prediction in energy norm. Numerical examples of thick-walled cylinder, axisymmetric crack in a round bar and internal part-thorough cracked pipes are tested with high precision.

Monohydrated Sulfuric and Phosphoric Acids with Different Hydrogen Atom Orientations: DFT and Ab initio Study

  • Kolaski, Maciej;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1998-2004
    • /
    • 2012
  • We carried out DFT calculations for monohydrated sulfuric and phosphoric acids. We are interested in clusters which differ in orientation of hydrogen atoms only. Such molecular complexes are close in energy, since they lie in the vicinity of the global minimum energy structure on the flat potential energy surface. For monohydrated sulfuric acid we identified four different isomers. The monohydrated phosphoric acid forms five different conformers. These systems are difficult to study from the theoretical point of view, since binding energy differences in several cases are very small. For each structure, we calculated harmonic vibrational frequencies to be sure that if the optimized structures are at the local or global minima on the potential energy surface. The analysis of calculated -OH vibrational frequencies is useful in interpretation of infrared photodissociation spectroscopy experiments. We employed four different DFT functionals in our calculations. For each structure, we calculated binding energies, thermodynamic properties, and harmonic vibrational frequencies. Our analysis clearly shows that DFT approach is suitable for studying monohydrated inorganic acids with different hydrogen atom orientations. We carried out MP2 calculations with aug-cc-pVDZ basis set for both monohydrated acids. MP2 results serve as a benchmark for DFT calculations.

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • 한국환경과학회지
    • /
    • 제30권1호
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2855-2860
    • /
    • 2012
  • The coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, it was performed to find out electrostatic properties of the NAC-coated-gold surface and the $ZrO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The dependence of the potential and charge density on the concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.