• Title/Summary/Keyword: Potassium poly(acrylate)

Search Result 8, Processing Time 0.023 seconds

Effect of protective colloid on the synthesis of Poly(Vinyl acetate-co-Ethyl acrylate) (Poly(VAc-co-EA) 공중합체 제조에 있어 보호콜로이드의 영향에 관한 연구)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.216-221
    • /
    • 2010
  • Polyvinyl acetate (PVAc) prepared by emulsion polymerization has broad applications for additive such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly (vinyl acetate-eo-ethyl acrylate) (VAc-EA) was synthesized using potassium persulfate as catalyst and polyvinylalcohol (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced adhesion, water resistance during VAc-EA emulsion polymerization. No coagulation and complete conversion occur with the reactant mixture of 10 mmol/L potassium persulfate, 10 mmol/L poly ( vinyl alcohol) (PVA 17). As the concentrations of PVA increase, the viscosity becomes increase.

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.

Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte (Poly(acrylonitrile) 부직포 분리막에 코팅된 하이드로겔 고분자 전해질을 포함하는 활성탄 수퍼커패시터 특성)

  • Latifatu, Mohammed;Ko, Jang Myoun;Lee, Young-Gi;Kim, Kwang Man;Jo, Jeongdai;Jang, Yunseok;Yoo, Jung Joon;Kim, Jong Huy
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.550-555
    • /
    • 2013
  • A hydrogel electrolyte consisting of potassium poly(acrylate) (PAAK) (3 wt%) in 6 M KOH aqueous solution is coated on poly(acrylonitrile) nonwoven separator to examine high-rate characteristics of activated carbon supercapacitor adopting the separator. The hydrogel is homogeneously coated on the surface pores of the nonwoven separator. The electrolyte uptake of the PAAK hydrogel maintains for 24 days higher than 230% and the coated separator shows slightly lower ionic conductivity ($2.9{\times}10^{-2}Scm^{-1}$) than that ($3.6{\times}10^{-2}Scm^{-1}$) of using 6 M KOH only. The activated carbon supercapacitor adopting the coated separator shows a specific capacitance higher than $27Fg^{-1}$ at $1000mVs^{-1}$ and a retention ratio higher than 97% after the 1000th cycle. This is due to strong interfacial contact of coated hydrogel electrolyte between the activated carbon electrode and the nonwoven separator.

Electrochemical Properties of Activated Carbon Supecapacitor Adopting Poly(acrylonitrile) Separator Coated by Polymer-Alkaline Electrolytes (고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성)

  • Kim, Kwang Man;Lee, Young-Gi;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • Alkaline electrolytes consisting of 6 M KOH and polymer (PEO, PVA, and PAAK) are coated on PAN nonwoven fabrics as a separator, and the electrochemical properties of the activated carbon supercapacitor adopting them are investigated in terms of redox behavior, specific capacitance, and interfacial impedance. Although the interaction between polymer and KOH are comparatively inactive in PEO and PVA, PAAK (3 wt.%)-KOH forms a hydrogel phase by active interactions between $COO^-K^+$ in side-chain of PAAK and $K^+OH^-$ from alkaline electrolyte solution, improving ionic conduction of electrolytes and the electrochemical properties of the supercapacitor. As a result, the activated supercapacitor adopting the PAAK-KOH shows the superior specific capacitance of $46.8Fg^{-1}$ at $100mVs^{-1}$.

Preparation and Swelling Properties of Poly(potassium acrylate-co-acrylamide) Superabsorbent Particles (폴리(아크릴산 포타슘-co-아크릴아마이드) 고흡수성 입자의 제조 및 팽윤 특성)

  • 손오건;심상준;이동현;이영관;김지홍;김덕준
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • Superabsorbent poly(potassium acrylate-co-acrylamide)s were synthesized in particle form using inverse suspension polymerization technique. Mean diameter of the prepared polymer particles decreased from 300 to 50 $\mu\textrm{m}$ with increasing surfactant concentration. The dynamic and equilibrium swelling behaviors during water absorption and drying process were investigated by weight measurement. The swelling ratio of polymer particles in water changed according to not only polymer crosslinking density, but particle size, saline concentration of aqueous medium, and copolymer compositions. Water sorption amount was increased with decreasing particle size, crosslinking agent concentration, and ion concentration in bulk solution. Being different from the water sorption process, the drying process was not significantly affected by particle size, polymer composition, or crosslinking amount.

Emulsion Polymerization of Vinyl acetate-Butyl acrylate Copolymer (유화 중합에 의한 비닐 아세테이트-부틸 아크릴레이트 공중합체의 합성 연구)

  • 설수덕;임종민
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2004
  • Poly(vinyl acetate) (PVAc) prepared by emulsion polymerization has broad applications for additives such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly(vinyl acetate-co-butyl acrylate) (VVc-BA) was synthesized using potassium persulfate as catalyst and poly(vinyl alcohol) (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced colloid stability, adhesion, tensile strength and elongation. During VAc-BA emulsion polymerization, no coagulation and complete conversion occur with the reactant mixture of 0.7wt% potassium persulfate, 15wt% poly(vinyl alcohol) (PVA-217), and the balanced monomer that the weight ratio of vinyl acetate to butyl acrylate is 19. As the concentrations of PVA increase, the copolymerization becomes faster and polymer particles are more stable, resulting in enhanced mechanical stability of the VAc-BA copolymer. However, the size of the polymer particles decreases with increasing PVA contents. Properties of the VAc-BA copolymer, such as minimum film formation temperature, glass transition temperature, surface morphology, molecular weight and molecular weight distribution, tensile strength and elongation, were characterized using differential scanning calorimeter, transmission electron microscope and other instruments.

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.

Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(Ethylene Oxide) Separator and a Hydrogel Electrolyte (레이온/폴리에틸렌옥사이드 분리막과 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터 특성)

  • Lee, Hea Soo;Kim, Kwang Man;Jang, Yunseok;Kim, Kwang Young;Yu, Jung Joon;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • The mechanical and electrochemical properties of poly(ethylene oxide) (PEO)-coated Rayon separator were characterized using potassium polyacrylate (PAAK)-KOH electrolyte. The supercapacitive properties of activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was also tested. As the PEO content increased, the mechanical strength increased. Room-temperature ionic conductivity of over $10^{-2}S\;cm^{-1}$ was obtained at the PEO content lower than 5 wt.%, applicable to a supercapacitor. As a result, the specific capacitance at $1000mV\;s^{-1}$ of the activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was highly stable after 1000th cycle. This was due to high rate-capability provided by the fact that PEO coating could fix the entanglements among fiber filaments of Rayon.