• Title/Summary/Keyword: Potassium fertilizer

Search Result 503, Processing Time 0.021 seconds

Adjustment of Nitrogen by the Absorbing Patterns of Nutrients of Some Crops and N - Leaching in the Soil (시비보정(施肥補正)을 위(爲)한 작물(作物)의 양분(養分) 흡수(吸收) 양상(樣相)과 토양중(土壤中) 비료성분(肥料成分) 용탈(溶脫)에 관(關)한 연구(硏究))

  • Kim, Moon-Kyu;Chang, Ki-Woon;Woo, In-Shik;Ham, Suon-Kyu;Nam, Yun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 1989
  • Barley, garlic, and soybean were cultivated in the silt loam, sandy loam, and loam, respectively, and the absorbing patterns of N, P, and K during growing of the crops were determined. While, the leaching of N, P, and K applied in the above soils in four levels of topsoil depths and in four leachate levels of excess precipitation was measured through the column. The depths of the soil were devised to 20, 35, 50, and 65cm, and the levels of excess water were classified to each leachate of 20, 40, 60, and 80mm precipitation, and nitrogen, phosphorous, and potassium in each fraction of the leachate were analyzed. By the analyses of the chemical components during growth of the crops, their absorbing patterns of N, P, and K were investigated. The order of N-leachings in the soils was sandy loam > loam > silt loam, and the leaching of $K_2O$ was very similar to N. The leaching of $P_2O_5$ was slight in all kinds of the soils. By the combination of the absorbing patterns of the crops in three kinds of soils and the leaching of the nitrogen in four levels of soil depth and four levels of excess precipitation, the method to replace the nitrogen lost by leaching was presented.

  • PDF

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Nutrient Balance and Vegetable Crop Production as Affected by Different Sources of Organic Fertilizers (유기자원에 따른 양분수지 및 작물생산)

  • Agus, Fahmuddin;Setyorini, Diah;Hartatik, Wiwik;Lee, Sang-Min;Sung, Jwa-Kyung;Shin, Jae-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Understanding the net nutrient balance in a farming system is crucial in assessing the system's sustainability. We quantified N, P and K balances under vegetable organic farming in a Eutric Haplud and in West Java, Indonesia in five planting seasons from 2005 to 2007. The ten treatments and three replications, arranged in a completely randomized block design, included single or combined sources of organic fertilizers: barnyard manure, compos ts or green manures. The organic matter rates were adjusted every planting season depending on the previous crop responses. The result sshowed that the application of ${\geq}20$ t $ha^{-1}$ barnyard manure per crop resulted in positive balances of N, P, and K, except in the second crops of 2006 where potassium balance were -25 to -11 kg $ha^{-1}$ under the treatments involving cattle barnyard manure, because of low K content of these treatments and high K uptake by Chinese cabbage. Application of 20 to 25 t $ha^{-1}$ of plant residue or 5 t $ha^{-1}$ of Tithonia compost also resulted in a negative K balance. Soil available P increased significantly under ${\geq}25$ t $ha^{-1}$ barnyard manure and that under chicken manure had the highest available P. Accordingly, chicken barnyard manure gave the highest crop yield because of relatively higher N, P, and K contents. Plant residues gave the lowest yield due to the lowest nutrient content among all sources. Reducing the use of barnyard manure to 12.5 t $ha^{-1}$ and substituting it with Tithonia compost, Tithonia green manure or vegetable plant residue compost gave insignificantly different yield compared to the application of 25 t $ha^{-1}$ barnyard manure singly. In the long run, application of 25 t ha-1 cattle, goat, and horse manure or about 20 t $ha^{-1}$ chicken manure is recommendable for sustaining the fertility of this Andisol for vegetable production.

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

Estimation of Nondestructive Rice Leaf Nitrogen Content Using Ground Optical Sensors (지상광학센서를 이용한 비파괴 벼 엽 질소함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.435-441
    • /
    • 2007
  • Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.

Seedling Age Effects on the Growth and Nutrient Uptake of Chamaecyparis obtusa Container Seedlings (편백 용기묘의 묘령에 따른 생장 및 양분 흡수 특성)

  • Deokgyo Jeong;Gyeongwon Baek;Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • This study was performed to determine the effects of Four seedling age classes ageon the characteristics of growth and nutrient uptake in Chamaecyparis obtusa container seedlings. Seedlings (1-1, 2-0, 2-1, and 2-2 seedlings) of C. obtusa grown in containers were harvested to measure specific leaf area, height (H)/root collar diameter (D) ratio, dry mass of aboveground (T)/root dry mass (R) ratio, and seedling quality index of seedlings. The specific leaf area was highest in 1-0 seedlings (30.48 cm2 g-1), whereas it decreased (from 28.62 cm2 g-1 to 23.59 cm2 g-1) with increasing seedling age. The H/D ratio increased with increasing seedling age (from 4.41 in 1-0 seedlings to 8.35 in 2-2 seedlings). The T/R ratio decreased as the seedling age increased (from 4.29 in the 1-0 seedling to 2.13 in the 2-1 seedling). The seedling quality index increased with increasing seedling age (from 0.10 for the 1-0 seedling to 3.06 for the 2-2 seedling). The carbon concentrations of seedling components (leaf, branches, stem, and roots) did not differ significantly with seedling age, whereas the nitrogen concentration of seedling components was the lowest in 2-1 seedlings, as no fertilizer was applied to discourage excessive growth of the seedlings. Phosphorus, potassium, and magnesium concentrations in 2-1 seedling components were not affected by the lack of fertilizer application. These results can be applied to determine the optimum morphological characteristics and nutrient management by seedling age in container- grown C. obtusa.

Study on Forage Cropping System Adapted to Soil Characteristics in Reclaimed Tidal Land (간척지 토양특성에 알맞은 사료작물 작부체계 연구)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Kim, Sun;Jeong, Jae-Hyeok;Baek, Nam-Hyun;Choi, Weon-Young;Lee, Sang-Bok;Kim, Young-Doo;Kim, Si-Ju;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.385-392
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal and Gyehwa region of Saemangum reclaimed tide land from October, 2009 to October, 2011. Whole crop barley (WCB), Rye, Italyan-ryegrass (IRG) as winter crops and Corn, Sorghum${\times}$sudangrass hybrid (SSH) as summer crops were cultivated. Soil chemical properties, nutrient uptake, feed value, growth and yield were examinated. The testing soil was showed saline alkali soil where the contents of organic matter, available phosphate and exchangeable calcium were very low, while exchangeable sodium and magnesium were higher. Changes of soil salinity during the growing season of forage crops were less than 0.2%, and the growth of forage crops was not affected by salt injury. Standing rates of winter crops were higher in the order of Rye, WCB, and IRG, while the dry matter yield of winter crops was higher in the order of IRG, Rye and WCB. The highest crude protein (CP) content was recorded in IRG, and total digestive nutrients (TDN) contents were increased in the order of WCB, IRG, and Rye. The TDN content was higher in corn, whereas other feed value was higher in SSH. The content of mineral nutrients on stem, leaf and grain in IRG, Corn were high. After experiment pH was lowed, contents of exchangeable magnesium, sodium and organic matter were decreased while contents of total nitrogen, available phosphate and exchangeable potassium, calcium were increased. Winer crops and summer crops after continually cultivating in cropping system, fresh matter yield increased, compared to WCB-Corn (74,740 kg $ha^{-1}$), IRG-SSH 10%, IRG-Corn 7%, Rye-SSH 6%, Rye-Corn and WCB-SSH 3%. Dry matter yield increased, compared to WCB-Corn (20,280 kg $ha^{-1}$), IRG-SSH 7%, Rye-SSH 6%, IRG-Corn/Rye-Corn/WCB-SSH 3%. The TDN yield increased, compared to WCB-Corn (13,830 kg $ha^{-1}$), IRG-SSH 2%, WCB-SSH and IRG-Corn 1%. Therefore, we suggest that the crop combination of IRG-SSH and WCB-SSH would be preferred for silage stable production.

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF

Diagnosis of the Field-grown Rice Plant -II. Diagnosis by total plant analysis (포장재배(圃場栽培) 수도(水稻)의 영양진단(營養診斷) -II. 전분석(全分析)에 의(依)한 진단(診斷))

  • Park, Hoon;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.165-172
    • /
    • 1973
  • The optimum time for nutritional diagnosis of the field-grown rice plant by total plant analysis, and the relationship between maximum or minimum nutrient content at various growth stages and corresponding yield and between maximum or minimum yield and corresponding nutrient content were as follows. 1. The percentage occurence of the minimum nutrient content in straw or grain of minus nutrient plot was in the order of 20 days after transplanting (20)>maximum tillering (MT)>harvested straw (HS)> earformation (EF)>straw at flowering (FS)>harvested grain (HG)>ear at flowering (FE) for nitrogen, MT>EF>HS>20=FS>FE>HG for phosphorus and MT>EF>20>FS>HG>FE for potassium. 2. The time when the occurece of minimum nutrient content in minus plot is highest was considered as the optimum time for nutritional diagnosis of root zone. It was 20 days after transplanting in N and maximum tillering stage in P and K. 3. The highest relative difference($100{\times}(L-H)/H$), between maximum (H)and minimum(L) nutrient content appeared in harvested straw for N and P while in harvested grain for K and Si, suggesting the close relation to their translocation from straw to grain. 4. The corresponding yield of maximum nutrient content was higher than that of minimum content at all growth stages in N, at all stages except MT and EF in P, at 20 days after trans planting and harvest in K, but it was always lower in Si, thus the contribution of nutrient content to yield will be in the order of N>P>K>Si. 5. The highest relative difference ($100{\times}(L-H)/H$, where H and L stand for yields) between yields corresponding to maximum and minimum nutrient content appeared at 20 days after transplanting for N. P. K, indicating the time of the closest relation between yield and nutrient content. 6. The highest difference (H-L, where H and L stand for nutrient content) between N. P. K contents corresponding to maximum or minimum yields came at 20 days after transplanting. The contents of N. P. K corresponding to the maximum total dry matter yield were lower than those corresponding the maximum grain yield at this stage. These facts support the closest relation between yield and nutrient content at this time. 7. The highest yield among yields corresponding to maximum nutrient contents occured at 20 days after transplanting in N. P. K but the lowest yield among yields corresponding to minimum nutrient contents appeared at the same stage only in nitrogen. 8. From the above facts the optimum time for diagnosis of nutrient around root zone seems different from that for diagnosis of nutritional status in relation to grain yield.

  • PDF

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF