• Title/Summary/Keyword: Potassium fertilizer

Search Result 503, Processing Time 0.03 seconds

Effects of Nitrogen and Potassium Fertigation on Growth, Yield and Quality of Musk Melon (Cucumis melo. L) (시설멜론의 관비재배를 위한 질소와 칼륨의 관비수준 설정)

  • Rhee, Han-Cheol;Park, Jin-Meun;Seo, Tae-Cheol;Choi, Gyoeng-Lee;Roh, Mi-Young;Cho, Myeung-Whan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • This study was conducted to identify optimal concentrations of N (nitrogen) and K (Potassium) fertilizers on growth, yield and quality of melon (Cucumis melo. L) when they were grown with a fertigation culture in a greenhouse. Three strength (S) levels of fertilizers, including 1 S, 1/2S, and 1/4S were supplied N and K nutrients as using a trickle irrigation system. When the strength level of fertilizers was increased from 1/4S to 1 S, the level of EC (electronic conductivity) in soil was increased. Soil-water tension was ranged between -15 and -20kPa until fruit setting stage, whereas it was ranged between -45 and -50kPa in the later growth stages. In results, N fertilizer had effects on fruit yield and quality. A higher fruit yield was observed when plants were supplied with 1 S and 1/2S level of N fertilizer. The highest yield of marketable fruit, about 5,086kg/10a, was also observed when plants were supplied with 1/2S N fertilizer. A higher net index and sugar content of fruit was observed in the treatments of 1/2S and 1/4S level of N fertilizer compared to 1 S level. In contrast, there was no statistic difference in the yield and quality with three levels of K fertilizer. Results indicate that the 1/2S level for N and 1/4S level for K fertilizer are effective and optimal for the melon plants grown under the fertigation culture in terms of increasing fruit yield and quality and reducing the cost of fertilizers.

Growth of Korean Kimchi Cabbage and Nitrogen Availability of Fertilizer in Organic Farming with Poultry Manure Compost and Natural Mineral Materials in Highland Rainshelter Cultivation (계분퇴비와 천연무기질 자재를 활용한 고랭지배추 비가림 유기재배 시 시용질소의 이용률과 배추의 생육)

  • Kim, Ki-Deog;Kwon, Yeong-Seok;Yoo, Dong-Lim;Lee, Jong-Nam;Seo, Jong-Taek
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.1
    • /
    • pp.69-78
    • /
    • 2013
  • This study was carried out to evaluate nitrogen availability of applied fertilizer and to investigate yield and growth of Korean kimchi cabbage as affected by amount of fertilizer and soil fertility in organic farming applied various fertilizers in rainshelter. The head weight of Korean kimchi cabbage cultured in infertile soil (sand loam) with no amendments was very low. and that in fertile soil (clay loam) was higher than in infertile soil (sand loam). The head weight of Korean kimchi cabbage as affected by amount of fertilizer was more variable in infertile soil (sand loam) than in fertile soil (clay loam). Nitrogen availability of applied fertilizer by Korean kimchi cabbage was lower in fertile soil (clay loam) than in infertile soil (sand loam) and the lower that was, the more fertilizer applied. By application of poultry manure compost 20Mg ha-1 and natural mineral materials such as guano, phosphate rock, and potassium magnesium rock equal to amount of fertilizer recommended in conventional farming, the yield of Korean kimchi cabbage in infertile soil (sand loam) with 1% organic matter came up to 90% of the yield in fertile soil (clay loam) with 6% organic matter. Therefore natural mineral materials such as guano for N source, phosphate rock for P source, and potassium magnesium rock for K source may be able to use as environmental-friendly fertilizers in organic Korean kimchi cabbage production in highland.

Red Pepper Productivity and Soil Properties as Affected by Different Intervals of Side-dressing N and K Applications in Plastic Film House

  • Ahn, Byung-Koo;Im, Ga-Young;Kim, Kab-Cheol;Chon, Hyong-Gwon;Jeong, Seong-Soo;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • Consecutive pepper cultivation in plastic film houses may lead to salt accumulation because pepper is considered a heavy nutrient feeder. For this reason, appropriate methods of fertilizer application should be established. Thus, we investigated the effect of different intervals of side-dressing N and K fertilizer applications on soil and red pepper in a plastic film house. All the amounts of recommended compost and phosphorus fertilizer were applied as basal dressing. Cultivars of the pepper plant were Cheon-Ha-Dae-Se (CHDS) and NW-BiGaLim (NW-BGL). Nitrogen and potassium fertilizers were treated as side-dressing at different intervals, 22 times in every 10 days, 15 times in every 15 days, and 11 times in every 20 days. Soil pH decreased with decreasing the intervals of side-dressing applications, whereas electrical conductivity (EC) declined with the increasing fertilizer application intervals. In particular, EC value decreased by up to 75% with CHDS cultivar in the plot of 20 day-interval and with NW-BGL cultivar in the plot of 15 day-interval. The concentrations of available phosphorus in the soils increased with increasing the interval. The concentration of exchangeable $K^+$ increased but exchangeable $Ca^{2+}$ and $Mg^{2+}$ decreased in all the plots, except in the control plot. The concentrations of nitrogen and phosphorus in leaves of the pepper plants were lowest in the control plot. Potassium concentrations in the pepper leaves were high in the control plot and in the plots of CHDS with 10 day-interval and NW-BGL with 15 day-interval. Red pepper productivity was high in the plots of 10- and 15 day-intervals for CHDS cultivar and 15- and 20 day-intervals for NW-BGL cultivar. Therefore, the 15 day-interval of side-dressing N and K applications was considered as an appropriate method for cultivating pepper plants and protecting soil in plastic film houses.

Effect of Applying Soil Amendments on Potato Scab Prevention in Volcanic Ash Soil with Continuous Cropping System (토양개량제시용에 따른 화산회토양 감자 연작지 더뎅이병 억제 효과)

  • Joa, Jae-Ho;Moon, Doo-Kyung;Koh, Sang-Wook;Son, Daniel
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.719-730
    • /
    • 2014
  • This study was conducted to select proper soil amendments in order to reduce the occurrence of potato scab and maintaining soil health by applications of dolomitic lime, sulfur, potassium sulfate, shell meal fertilizer, silicate fertilizer, lime nitrogen and ammonium sulfate fertilizer in different pH levels of volcanic ash soil with continuous cultivation of potato. In potassium sulfate-applied plot with a low soil pH, the incidence rate and disease severity of scab were lowest at 84.4% and 28.4%, respectively. Those were lowest among the treatments. Value of potato scab control was 12.3% and marketable yield of potato was highest at 93.2%. In lime nitrogen-applied plot (60 kg/10a), the incidence rate was low at 38.3%, and control value was 23.8% and marketable yield of potato was high at 66.3%. In relatively higher pH soils, the incidence rate of scab was lowest at 38.3% in the lime nitrogen-applied plot (60 kg/10a). Value of potato scab control was 23.8%, which was four times higher than that in sulfur-applied plot. Marketable yield of potato was highest at 66.3% in the lime nitrogen-applied plot. In the lime nitrogen plot infected with potato scab pathogen such as S. acidiscabies and S. scabiei were remarkably lower than other soil amendments at 2.5, 5, and 10 g/L concentrations of lime nitrogen using Glucose Yeast Malt (GYM) medium. In conclusion, this study suggests that potassium sulfate application in low pH soil (less than pH 5) and lime nitrogen application in relatively higher pH soil (more than pH 6) before potato seeding might be helpful to reduce the occurrence of potato scab.

Studies on split top dressing of total quantity of potassium to rice (수도(水稻)에 대(對)한 가리(加里)의 전량추비분시(全量追肥分施)에 관(關)한 연구(硏究))

  • Ryu, In Soo;Lee, Seung Tack;Oh, Wang Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 1975
  • A pot experiment was conducted to study the effect of two methods of applying potassium fertilizer to rice. One basic application was compared with the split of same total quantity into four applications as follows: 15 days after transplanting (40%), Ear formation stage (30%), 13 days before heading (20%) and 7 days after heading (10%) Each of these two treatments was carried out on both untreated soil and soil to which wollastonite and lime material had been added. The number of ripened grains or the 1,000 grain weight was increased by application of potassium to untreated soil. However, on soil treated with lime and wollastonite only the number of total grains was increased by potassium application. In both cases, split application of the potassium was more affective than a single basic application. No significant increase in yield was obtained from a single basic application of potassium. However, split application of the same total quantity of potassium did give a significant increase in yield. A negative correlation was found between the content of $K_2O$ and that of other nutrients in the rice plant at two stages of growth. Significant negative correlation was obtained between the content of $K_2O$ and magnesium, phosphorus and nitrogen at ear formation stage, and between the content of $K_2O$ and calcium and silicate including magnesium, phosphorus and nitrogen at heading stage. This result also indicated that the depression of uptake of phosphorus and magnesium at ear formation stage and that of calcium and silicate at heading stage were decreased by potassium split application. However, the degression of uptake of nitrogen at ear formation stage and that of magnesium at heading stage were increased by potassium split application.

  • PDF

Effect of Potassium Application on Cation Uptake by Rice Plant and Leachate in Submerged Soil (답토양(畓土壤)에서 가리시용(加里施用)이 벼의 주요양(主要陽)이온 흡수(吸收)와 용탈(溶脫)에 미치는 영향(影響))

  • Jung, Kwang-Young;Cho, Seong-Jin;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.235-241
    • /
    • 1983
  • Major cation uptake by the rice plant and its leachates in submerged condition were studied at 3 different levels of potassium and nitrogen application with three texture soils (Clay loam, Loam, Sandy loam) by pot experiment. The results are as follows. 1. Potassium uptake and grain yields of rice plant were increased and calcium and magnesium uptake of rice plant were decreased by application of potassium. 2. The potassium application caused to increase Ca, Mg, K and $NH_4$ Content in leachate. 3. In the rice leaf at heading stage, the optimum cation ratios of K/Ca, K/Mg in me and $K_2O/N$ in % at N 3.3g/pot level were 1.59, 4.26 and 3.62, respectively, but the ratios were increased to 1.65, 4.32 and 3.94 at high level of nitrogen. 4. Similar trends of cation ratios were found in rice straw. leaching soil solution and soils after harvest by potassium application.

  • PDF

Effect of Potassium Silicate Amendments in Hydroponic Nutrient Solution on the Suppressing of Phytophthora Blight (Phytophthora capsici) in Pepper

  • Seo, Sang-Tae;Wang, T.C.;Jang, Han-Ik;Pae, Do-Ham;Engle, L.M.;Lee, Jung-Sup
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • Amendments of a recirculating nutrient solution with potassium silicate were evaluated as a means to control Phytophthora capsici infections on pepper plant(Capsicum annuum L.). Supplying the solutions with 100 or 200 ppm of silicate significantly reduced motility, root decay, and yield losses attributed to infection of P. capsici. Treating inoculated plants with potassium silicate increased root dry weights and number of fruit, especially high-grade fruit. Results were slightly superior to non-inoculated controls. The two varieties, PBC 137 and PBC 602, responded similarly to the treatments. No significant differences were observed between the 100- and 200 ppm silicate treatments. Results were better when greenhouse conditions favored the spread of P. capsici. Silicon alone did not increase pepper yield, suggesting that it acts as a disease suppression agent rather than as a fertilizer, The phenomena by which silicon confers protection against P. capsici infection and disease development are not fully understood, but our results indicate that mechanisms other than a mechanical barrier to fungal penetration are involved.

Effect of Long-Term Fertilizer Application on the Growth and Yield of Rice (장기간(長期間)의 비료연용(肥料連用)이 수도(水稻)의 생육(生育)과 수량(收量)에 미치는 영향(影響))

  • Yang, Euy Seog;Ahn, Su Bong
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 1986
  • Long-term fertilizer application have been carried out at experimental farm of the Yeongnam Crop Experiment Station from 1967 to 1983 to obtain basic informations about longterm effect of fertilizer regime, especially, compost and chemical fertilizer on the soil chemical properties and the rice growth. 1. Rice yields obtained from the non-fertilized plot and PK applied plot were significantly reduced compared to NPK applied plot by 43% and 53%, respectively, primarily due to decrease of leaf area, crop growth rate, number of panicles and number of spikelets and delayed flowering. 2. No visible phosphorus-symptom and yield loss were obserbed at the plot that phosphorus was not included even though phosphorus content in the soil and rice plant were lowered. 3. The plot that was not received potassium resulted in yield loss by 9% compared to NPK applied plot due to decrease in potassium content in soil and rice plant, and spikelt number. 4. Available phosphorus, silica, and exchangeable potassium in soil significantly increased by adding compost to NPK applied plot and hence, increased grin yield by 6 to 9% compared to applied plot through improvement of nutrient uptake efficiency. 5. Grain yield of compost applied plot lowered by 30% than NPK applied plot due to decreased nutrient uptake efficiency and delayed rice growth while this yield was higher than Non-fertilized plot.

  • PDF

Potassium Availability and Physical Properties of Upland Soils (밭토양(土壤)의 물리성(物理性)과 가리(加里))

  • Yoo, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.189-201
    • /
    • 1977
  • Some of basic aspects of soil potassium with special reference to soil physical properties were discussed. Data in the Official Soil Series Description(Korea) was analyzed according to soil type, land form, and soil texture to find soil potassium status which may explain different response to potassium application. Exchangeable potassium contents decreased with soil depth irrespective of soil type, land form and soil texture. Change in degree of potassium saturation within soil profile was not so clear as exchangeable potassium but the degree of potassium saturation of A horizon was highest among soil horizon. Soils of terrace and mountain foot slope showed high values both in exchangeable potassium and degree of potassium sauration and only these two soils were classified as soils having exchangeable potassium higher than 0.3 meq per 100g of soil and degree of potassium saturation higher than 5.0%. Exchangeable potassium of fine loamy and fine clayey soils is higher than 0.3 meq per 100g of soil but degree of potassium saturation is lower than 4.0%. Degree of potassium saturation of sandy soils exceeds 5.0% but exchangeable potassium is very low. Soils of rolling, hilly, unmatured and alpine land soils have lower exchangeable potassium and show lower degree of potassium saturation. The highest distribution of exchangeable potassium content irrespective of soil horizons was shown in the range of 0.1-0.2 meq per 100g of soil. The highest distribution of degree of potassium saturation was in the range of 2.0-3.0% in A horizon and 1.0-2.0% in B and C horizons. Of the soil series concerned in this analysis, 27.3% in A horizon, 11.1% in B horizon and 4.0% in C horizon had exchangeable potassium higher than 0.3 meq per 100g of soil and 18.0% in A horizon, 6.3% in B horizon, and 4.1% in C horizon showed degree of potassium saturation higher than 5.0%. The low response of potassium application only to soils in terrace and mountain foot slope may be resulted from the high exchangeable potassium content and high degree of potassium saturation. It is concluded that a great response of potassium application to soils is expected especially in dry season.

  • PDF

Effects of Potassium on the Ammonia Volatilization and Nitrogen Absorption by Paddy Rice (수도(水稻)에 대한 가리(加里)의 시용(施用)이 암모니아의 휘산(揮散)과 질소(窒素)의 흡수(吸收)에 미치는 영향(影響))

  • Oh, Wang-Keun;Kim, Seong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1981
  • A pot Experiment and a field investigation were carried out in order to obtain some information on the ammonia volatilization and nitrogen absorption by paday rice plants in relation to the potassium application and roots growth. Results obtained were as follows ; 1. Urea application to the polt where potassium was added and rice plant was grown increased the ammonia volatilization at the beginning, but in the latter stage, the volatilization gradually decreased below that of no potassium plot. 2. Total nitrogen absorbed by rice plant, however, was much greater from the potassium added plot than no potassium and pH of the wet soil was lower in the former treatment than in the latter. 3. The application of urea presumably caused greater raise of soil pH and higher ammonia valatilization from the potassium added plot than the no potassium at the beginning, but the active growth of plants and raveneous absorption of N by the plants at the later stage of plant growth resulted in lower ammonia volatilization and lower pH in the potassium added plot than no potassium plot. 4. When the penetration of rice roots was restricted, pH of the wet soil was lower in the plot where potassium added than no potassium, and so was the ammonia volatilization. 5. Under high pH condition of paddy soil, a heavier basal application of potassium chloride or potassium sulfate may reduce the ammonia volatilization particulary in the early growth period of paddy rice when the nutrient absorption by plant is insignificant. However, under an acid normal soil, it may cause ammonia loss through raise of soil pH at the early growth of paddy rice.

  • PDF