DOI QR코드

DOI QR Code

Effect of Potassium Silicate Amendments in Hydroponic Nutrient Solution on the Suppressing of Phytophthora Blight (Phytophthora capsici) in Pepper

  • Seo, Sang-Tae (Division of Horticultural Environment, National Horticultural Research Institute, RDA.) ;
  • Wang, T.C. (AVRDC The World Vegetable Center) ;
  • Jang, Han-Ik (Division of Horticultural Environment, National Horticultural Research Institute, RDA.) ;
  • Pae, Do-Ham (AVRDC The World Vegetable Center) ;
  • Engle, L.M. (AVRDC The World Vegetable Center) ;
  • Lee, Jung-Sup (Division of Horticultural Environment, National Horticultural Research Institute, RDA.)
  • Published : 2004.12.31

Abstract

Amendments of a recirculating nutrient solution with potassium silicate were evaluated as a means to control Phytophthora capsici infections on pepper plant(Capsicum annuum L.). Supplying the solutions with 100 or 200 ppm of silicate significantly reduced motility, root decay, and yield losses attributed to infection of P. capsici. Treating inoculated plants with potassium silicate increased root dry weights and number of fruit, especially high-grade fruit. Results were slightly superior to non-inoculated controls. The two varieties, PBC 137 and PBC 602, responded similarly to the treatments. No significant differences were observed between the 100- and 200 ppm silicate treatments. Results were better when greenhouse conditions favored the spread of P. capsici. Silicon alone did not increase pepper yield, suggesting that it acts as a disease suppression agent rather than as a fertilizer, The phenomena by which silicon confers protection against P. capsici infection and disease development are not fully understood, but our results indicate that mechanisms other than a mechanical barrier to fungal penetration are involved.

Keywords

References

  1. Adatia, M. H. and Besford, R. T. 1986. The effects of silicon cucumber plants grown in recirculating nutrient solution. Ann Bot. 58:343-351 https://doi.org/10.1093/oxfordjournals.aob.a087212
  2. Akai, S. 1953. Studies on Helminthosporium blight ofrice plants. VII. On the relation of silicic acid supply to the outbreak pf Helminthosporillm blight or blast disease in rice plants. Ann Phytopathol. Soc. Jpn 17: I 09-112 https://doi.org/10.3186/jjphytopath.17.109
  3. Aleshin, N. E., Avakyan, E. R., Dyakunchak, S. A., Aleshkin, E. P., Baryshok, V. P. and Voronkow, M. G 1986. Role of silicon in resistance of rice to Pyricularia. Dokl. Akad. Nallk SSSR 291 :499-502
  4. Anonymous. 1991. Loi sur les nonnes des produits agricoles du Canada. Pages 1-24 in: Regliment sur les fiuits et les legumes rrais. Consolidated Rigulation of Canada
  5. Carver, T. L. W, Zeyen, R. J. and Ahlstrand, G G 1987. The relationship between insoluble silicon and success or failure of attempted penetration by powdery mildew (Erysipheframinis) gennlings on barley. Physiol. Mol. Plant Pathol. 31: 133-148 https://doi.org/10.1016/0885-5765(87)90012-9
  6. Favrin, R. J., Rabe, J. E. and Mauza, B. 1988. Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Dis. 72:683-687 https://doi.org/10.1094/PD-72-0683
  7. Horst, W. J. and Marschner, H. 1978. Effect of silicon and manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil 50:287-303 https://doi.org/10.1007/BF02107179
  8. Jeffers, S. N. and Martin, S. B. 1986. Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 70: 1038-1043 https://doi.org/10.1094/PD-70-1038
  9. Jiang, D., Zeyen, R. J. and Russo, V. 1989. Silicon enhances resistance of barley to powdery mildew (Erysiphe graminis f. sp. hordei). (Abstr.) Phytopathology 79: 1198
  10. Jones, L. H. P. and Handreck, K. S. 1967. Silica in soils, plants, and animals. Adv. Agron. 19:107-149 https://doi.org/10.1016/S0065-2113(08)60734-8
  11. Kaufinan, P. B., Dayanandan, P., Takeoka, Y, Bigelow, W. C., Jones, J. D. and IIer, R. K. 1981. Silica in the shoots of higher plants. In: Simpson L, Volcani BE, eds. Silicon and silicaceous structures in biological systems. Berlin:Springer-Verlag, 409449
  12. Leusch, H. J. and Buchenauer, H. 1989. Effect of soil treatments with silica-rich lime fertilizers and sodium trisilicate on the incidence of wheat by Erysiphe graminis and Septoria nodorum depending on the fonn of N fertilizer. J Plant Dis. Prot. 96: 154-172
  13. Marschner, H., Oberle, H., Cakmak, I. and Romheld, V. 1990. Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply. Plant Soil 124:211-219 https://doi.org/10.1007/BF00009262
  14. Menzies, J. G, Ehrey, D. L., Glass, A. D. M., Helmer, T., Koch, C. and Seywerd, F. 1991. The effects of soluble silicon on the parasitic fitness of Sphaerotheca juliginea on Dudumis sativus. Phytopathlolgy 81 :84-88 https://doi.org/10.1094/Phyto-81-84
  15. Menzies, J. G, Ehret, D. L., Glass, A. D. M. and Samuels, A. L. 1991. The influence of silicon on cytological interactions between Sphaerothecajuliginea and Cucumis sativus. Physiol. Mol. Plant Pathol. 39:403-414 https://doi.org/10.1016/0885-5765(91)90007-5
  16. Miyake, Y. and Takahashi, E. 1983a. Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci. Plant Nutr. 29:71-83 https://doi.org/10.1080/00380768.1983.10432407
  17. Miyake, Y and Takahashi, E. 1983b. Effect of silicon on the growth of cucumber plant in soil culture. Soil Sci. Plant Nutr. 29:463-471 https://doi.org/10.1080/00380768.1983.10434649
  18. Ristaino, J. B., Larkin, R. T. and Campbell, C. L. 1994. Spatial dynamics of disease symptom expression during Phytqphthora epidemics in bell pepper. Phytopathology 84: 10151024 https://doi.org/10.1094/Phyto-84-1015
  19. Samuels, A. L., Glass, A. D. M., Ehret, D. L. and Menzies, J. G 1991. Mobility and deposition of silicon in cucumber plants. Plant Cell Environ. 14:485-492 https://doi.org/10.1111/j.1365-3040.1991.tb01518.x
  20. Sargent, C. 1976. In situ assembly of cuticular wax. Planta 129: 123-126 https://doi.org/10.1007/BF00390018
  21. Stanghellini, M. E. and Rasmussen; S. L. 1994. Hydroponics: A solution for zoosporic pathogens: plant Dis. 78: I 129-1 138 https://doi.org/10.1094/PD-78-1129
  22. Stanghellini, M. E., Rasmussen, S. L., Kim, D. H. and Rorabaugh, P. A. 1996. Efficacy of nonionic surfactants in the control of zoospore spread of Pythium aphanidermatum in recirculating .hydroponic system. Plant Dis. 80:422-428 https://doi.org/10.1094/PD-80-0422
  23. Starighellini, M. E., Stowell, L. J. and Bates M. L. 1984. Control of root rot of spinach caused by Pythium aphanidermatrm in a recirculating hydroponic system by ultraviolet irradiation. Plant Dis. 68:1075-1076 https://doi.org/10.1094/PD-69-1075
  24. Stanghellini, M. E. and Tomlinson, J. A. 1987. Inhibitory and lytic effects ofa nonionic surfactant on various asexual stages in the life cycle of Pythium and Phytophthora species. Phytopathology 77:112-114 https://doi.org/10.1094/Phyto-77-112
  25. Stanghellini, M. E., White, J. G.; Tomlinson, J. A. and Clay, C. 1988. Root rot of hydrdponidlty grown cucumbers caused by zoospore producing isolates of Pythium intermedium. Plant Dis. 72:358-359 https://doi.org/10.1094/PD-72-0358
  26. Thinggaard, K. and Anderson, H. 1995, Influence ofwatering frequency and electrical conductivity of the nutrient solution on Phytophthora root rot in pot plants of Gebera. Plant Dis. 79:259-263 https://doi.org/10.1094/PD-79-0259
  27. Van Der Plaats-Niterink, A. J. 1981. Monograph of the genus Pythium. Studies in Mydology No. 21. W. Gams and R. P. W. M. Jacobs, eds. Centraalbureau voor schimmelcultures, Iiaam, Netherlands
  28. Voogt, W. 1989. Komkommer: Silicium als meststof ttiedieneri nog niet mogelijk in praktijk. (Cucumber: Applicatioh of sill-con as fertilizer not yet possible in commercial practice.) Groenten Fruit 44:34-35
  29. Yoshida, S., Nasavero, S. A. and Ramirez, E. A. 1969. Effect of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31 :48-56 https://doi.org/10.1007/BF01373025
  30. Zinnen, T. M. 1988. Assessment of plant diseases in hydroponic culture. Plant Dis. 72:96-99 https://doi.org/10.1094/PD-72-0096

Cited by

  1. Management of phytophthora blight (Phytophthora capsici) on vegetables in Ontario: some greenhouse and field aspects vol.37, pp.3, 2015, https://doi.org/10.1080/07060661.2015.1078411
  2. Activity of two silicon salts in controlling the pistachio gummosis-inducing pathogen, Phytophthora pistaciae vol.46, pp.4, 2017, https://doi.org/10.1007/s13313-017-0496-x
  3. Silicon and increased electrical conductivity reduce downy mildew of soilless grown lettuce vol.132, pp.1, 2012, https://doi.org/10.1007/s10658-011-9855-6
  4. Etiology and management of Fusarium crown and root rot (Fusarium oxysporum) on greenhouse pepper in Ontario, Canada vol.39, pp.2, 2017, https://doi.org/10.1080/07060661.2017.1321044
  5. Controlling Effect of Agricultural Organic Materials on Phytophthora Blight and Anthracnose in Red Pepper vol.18, pp.1, 2012, https://doi.org/10.5423/RPD.2012.18.1.001
  6. Effect of Electrical Conductivity and Silicate on Infection of Basil withColletotrichum gloeosporioidesin Soilless Culture vol.160, pp.11-12, 2012, https://doi.org/10.1111/j.1439-0434.2012.01958.x