• 제목/요약/키워드: Potassium channels

검색결과 146건 처리시간 0.022초

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

벼 shaker like potassium channel들의 특성과 기능 (Characteristics and functions of shaker like potassium channels in rice)

  • 황현식;김현미;정미나;김동헌;변명옥;김범기
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.539-548
    • /
    • 2010
  • Potassium ($K^+$) is one of the most abundant cations in higher plant. It comprises about 10% of plant dry weight and it plays roles in numerous functions such as osmo- and turgor regulation, charge balance of plasma membrane and control of stomata and organ movement. Several potassium transporters and potassium channels regulate $K^+$ homeostasis in response to $K^+$ uptake systems. In this review, we describe the biological, biochemical and physiological characteristics of shaker like potassium channels in higher plant. Especially, we searched the rice genome databases and analysized expressed genes, genome structures and protein domain characteristics of shaker like potassium channels.

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • 제57권10호
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.

The Effects of Intracellular Monocarboxylates on the ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.581-589
    • /
    • 1998
  • A regulating mechanism of the ATP-sensitive potassium channels $(K_{ATP}\;channels)$ is yet to fully explained. This study was carried out to investigate the effects of intracellular application of monocarboxylates (acetate, formate, lactate, and pyruvate) on $K_{ATP}$ channels in isolated rabbit ventricular myocytes. Single channel currents of $K_{ATP}$ channels were recorded using the excised inside-out or permeabilized attached (open-cell) patch-clamp technique at room temperature. Intracellular application of acetate, formate and pyruvate led to an inhibition of channel activity, whereas intracellular application of lactate increased channel activity. These effects were reversible upon washout. Analysis of single channel kinetics showed that monocarboxylates did not affect open-time constant and close-time constant. These results suggest that monocarboxylates participate in modulating $K_{ATP}$ channels activity in cardiac cells and that modulation of $K_{ATP}$ channels activity may resolve the discrepancy between the low $K_i$ in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

  • PDF

The Effect of Papaverine on the Calcium-dependent $K^+$ Current in Rat Basilar Smooth Muscle Cells

  • Bai, Guang-Yi;Cho, Jae-Woo;Han, Dong-Han;Yang, Tae-Ki;Gwak, Yong-Geun;Kim, Chul-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권5호
    • /
    • pp.375-379
    • /
    • 2005
  • Objective : Papaverine has been used in treating vasospasm following subarachnoid hemorrhage[SAH]. However, its action mechanism for cerebral vascular relaxation is not clear. Potassium channels are closely related to the contraction and relaxation of cerebral smooth muscle. Therefore, to identify the role of potassium and calcium channels in papaverine-induced vascular relaxation, we examine the effect of papaverine on potassium channels in freshly isolated smooth muscle cells from rat basilar artery. Methods : The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Papaverine was added to the bath solution. Results : Papaverine of $100{\mu}M$ into bath solution increased the amplitude of the outward $K^+$ current which was completely blocked by BKCa[large conductance calcium dependent potassium channels]blocker, IBX[iberiotoxin], and calcium chealator, BAPTA[l,2-bis[o-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid], in whole cell mode. Conclusion : These results strongly suggest that potassium channels may play roles in papaverine-induced vascular relaxation in rat basilar artery.

흰쥐 배뇨근에 존재하는 potassium 통로의 특성 (Characteristics of Potassium Channel in the Isolated Rat Detrusor Muscle)

  • 장명수;최은미;하정희;이광윤;김원준
    • Journal of Yeungnam Medical Science
    • /
    • 제11권2호
    • /
    • pp.363-374
    • /
    • 1994
  • 흰쥐의 적출 배뇨근에 대한 수종의 potassium 통로개방제의 작용을 관찰하고, 배뇨근에 존재하는 potassium 통로의 특성을 알아보기 위하여 체중 250~350g의 흰쥐 (Sprague-Dawley)를 단두하여 희생시킨 후 방광을 적출하였다. 적출된 방광으로 부터 $1.5mm{\times}1.5cm$의 배뇨근 수평절편을 만들어 1ml의 Tyrode 영양액을 포함하는 적출근편실험조에 현수하고 등척성장력을 측정하여 polygraph에 묘기하였다. 배뇨근절편은 potassium 통로 개방제인 pinacidil, BRL 38227 및 RP 52891의 누적 농도 첨가에 의하여 그 기본장력이 농도의존적으로 감소하였는데 그 작용강도는 RP 52891, pinacidil 그리고 BRL 38227의 순이었다. 전위 의존성 potassium 통로 봉쇄제인 procaine은 배뇨근 절편의 기본장력에 영향을 미치지 못했으며, pinacidil, BRL 38227 및 RP 52891에 의한 기본장력감소작용에 대해서도 영향을 미치지 못하였다. 칼슘 의존성 potassium 통로봉쇄제인 apamin은 배뇨근의 기본장력에 유의한 변화를 가져오지 못하였고, potassium 통로 개방제들에 대하여는 상경적 길항작용을 나타내지는 않았으나 BRL 38227과 RP 52891의 최고효능을 유의하게 감소시켰다. ATP 의존성 potassium 통로봉쇄제인 glibenclamide는 배뇨근 절편의 기본장력을 증가시키고, pinacidil을 상경적으로 길항하였으며, BRL 38227과 RP 52891을 상경적으로 길항하는 동시에 그 최대효능을 감소시켰다. 췌장의 ${\beta}$-세포에서 ATP 의존성 potassium 통로를 개방시켜 인슐린의 분비를 억제하는 galanin은 흰쥐의 배뇨근을 수축시켰다. 이상의 결과를 종합하면, 흰쥐의 배뇨근에서는 새로운 potassium 통로 개방제인 RP 52891의 배뇨근 이완작용이 pinacidil보다 강한 것으로 관찰되었다. 또 흰쥐 배뇨근에서는 ATP 의존성이며, glibenclamide 반응성인 potassium 통로가 존재 한다고 생각되는데, 이는 췌장의 ${\beta}$-세포에 있는 ATP 의존성 potassium 통로와는 다른 특성을 가진 것으로 추측된다.

  • PDF

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin;Lee, Hong Joon;Choi, Jin-Sung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.75-82
    • /
    • 2017
  • The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

Encainide, a class Ic anti-arrhythmic agent, blocks voltage-dependent potassium channels in coronary artery smooth muscle cells

  • Hongliang Li;Yue Zhou;Yongqi Yang;Yiwen Zha;Bingqian Ye;Seo-Yeong Mun;Wenwen Zhuang;Jingyan Liang;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.399-406
    • /
    • 2023
  • Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 μM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.

Change of voltage-gated potassium channel 1.7 expressions in monocrotaline-induced pulmonary arterial hypertension rat model

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • 제61권9호
    • /
    • pp.271-278
    • /
    • 2018
  • Purpose: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. Methods: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. Results: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. Conclusion: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • 제25권4호
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.