• 제목/요약/키워드: Posture analysis

검색결과 835건 처리시간 0.022초

몸통 굽힘이 어깨위팔리듬과 어깨뼈의 움직임 및 근육 활성도에 미치는 영향 (Effect of Trunk Flexion on Muscle Activity, Motion of Scapular and Scapulohumeral Rhythm)

  • 박승규;한송이;강정일;이준희;양대중
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.243-252
    • /
    • 2011
  • The purpose of this study was to determine the effect of trunk posture on muscle activity and motion of scapular and scapulohumeral rhythm. Thirty-one healthy subjects performed right-arm abduction and adduction along the frontal plane while standing in both upright and flexed posture of trunk. Scapular upward rotation, anterior tilting and internal rotation ware recorded using a motion analysis system and muscle activity of upper trapezius, lower trapezius and serratus anterior ware recorded using surface electromyography during abduction and adduction in both trunk postures. then, scapulohumeral rhythm was calculated. Scapulohumeral rhythm and scapular posterior tilting in flexed posture was significantly decreased than in upright posture. Also, muscle activity of lower trapezius in flexed posture was significantly increased and serratus anterior was significantly decreased than in general posture. The result of this study revealed that flexed posture of trunk altered the muscle activity and kinematic of scapular. Measurement of trunk posture should be included the evaluation of dysfunction and disorder of shoulder girdle since rehabilitation of trunk posture is important to restore of upper limbs function.

승마 숙련도에 따른 기승자세 교정효과의 운동학적 분석 (Kinematic Analysis on the Stabilization & Correction Effects of Riding Posture According to Rider's Skill Levels in Horse Back Riding)

  • 류재청
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.83-94
    • /
    • 2012
  • The purpose of this study was to analyse the effect of posture correction & stabilization according to horse rider's(n=10) skill levels of novice(0wk), mid-skill(12wk) & skill(24wk) in walk & trot. First, Mean posture of 3 times experiments; Anterior & posterior leaning posture of trunk showed rather unstable according to progress of the stages of TD1, TO, TD2 phase, and also shoulder & elbow angle, which effects to the distance from bit to rein, showed unstable riding posture. There was close relationship between shoulder and elbow Angle in walk and hip, knee & ankle angle in trot. Second, Posture correction & stabilization according to riding skill levels; Anterior & posterior leaning posture of trunk did not show significant difference statistically but showed approaching tendency to trunk's vertical line and showed significant difference(p<.05) according to improvement of skill levels in walk & trot horse riding. Hip angle showed significant difference according to progress of the stages of TD1, TO, TD2 phase(p<.05) and showed tendency maintaining the larger thigh flexion according to improvement of skill levels in walk & trot. Knee angle showed more stable posture by maintaining the larger flexion between thigh and shank according to improvement of skill levels in walk & trot(p<.05). Ankle angle also showed tendency maintaining the larger plantar flexion of foot according to improvement of skill levels in walk & trot. When considering the above, regular horse riding program could be useful in posture correction & stabilization according to improvement of skill levels of novice(0wk), mid-skill(12wk) & skill(24wk) in walk & trot.

전방머리자세와 깊은목굽힘근의 지구력과 최대근수축력 및 통증, 아래턱위치변화간의 상관관계 (The Correlations between a Forward Head Posture and the Endurance and Maximal Voluntary Contraction of the Deep Neck Flexor, Neck Pain, and the Changed Position of the Mandible)

  • 석힘;이상열;김용훈
    • PNF and Movement
    • /
    • 제17권3호
    • /
    • pp.471-480
    • /
    • 2019
  • Purpose: This study examined the correlations between a forward head posture and the endurance and maximal voluntary contraction of the deep neck flexor, neck pain, and the changed position of the mandible. Methods: The subjects of this study were 50 male and female adults who work at a desk for at least four hours a day. The head-spine angle was photographed with a camera, and the endurance and maximal voluntary contraction of the deep neck flexor and the changed position of the mandible were measured using pressure biofeedback. The Neck Disability Index was used to measure neck pain. To examine the correlations between a forward head posture and the endurance and maximal voluntary contraction of the deep neck flexor as well as the changed position of the mandible, a Spearman's correlation analysis was conducted. The statistical significance was set at 0.05. Results: A forward head posture and the endurance of the deep neck flexor showed a statistically significant positive correlation, and a forward head posture and neck pain showed a statistically significant negative correlation. In addition, the endurance of the deep neck flexor and neck pain showed a statistically significant negative correlation. Conclusion: The results of this study show that a forward head posture and the endurance of the deep neck flexor were correlated; in addition, a forward head posture and neck pain were correlated. Therefore, enhancing the endurance of the deep neck flexor can assist in correcting an imbalanced forward head posture, which can reduce neck pain.

유도 올림피언 허벅다리걸기 기술발휘 시 받기의 자세와 저항수준에 따른 몸통과 하지의 각운동량 분석 사례연구[III] (A Case Study of Angular Momentum of Trunk and Lower extremity when Performing Uchimata by Posture and Voluntary Resistance Levels of Uke in Korean Judo Olympian[III])

  • 김의환;김성섭;정재욱
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.191-203
    • /
    • 2005
  • It was to study a following research of "A Kinematical Traits Analysis when Performing Uchimata(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[1]" and. "A Case Study of Center of Gravity(COG) when Performing Uchimata(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[II]". The purpose of this study was to analyze an angular momentum of trunk and lower extremity when performing uchimata by two postures and voluntary resistance levels(VRL) of uke(reciver) in Judo. The subjects, who were one male judoka(YH) for 1992 Barcelona Olympic Games Olympian(silver medalist), was filmed on two S-VHS 16mm video cameras(60fields/sec.) through 3-dimensional motion analysis methods, that postures of uke were shizenhontai (straight natural posture:NP) and jigohontai (straight defensive posture:DP), VRL of uke were 0% and 100%, respectively. The variables were angular momentum of trunk, lower extremity of attacking leg and supporting leg of tori(the thrower). The data of this study collection were digitized by SIMI Motion Program computed the mean values and the standard deviation calculated for each variables. When performing uchimata according to each posture and VRL of uke and classifying. From the data analysis and discussion, the conclusions were as follows : Angular momentum of trunk when performing uchimata was showed the largest among another angular momenta, and the posture displayed more different than resistant of uke(reciver), but the pattern similar in judo. Angular momentum of trunk of X axis was the largest and Y, Z axis order. Angular momentum of attacking the thigh-leg when performing uchimata was showed the largest among another angular momenta, and the posture displayed more different than resistant of uke(reciver), X axis and Y axis similar, but angular momentum of Z axis of thigh-leg the largest, in kake(application) event in 0% resistance of DP than other variables. Angular momentum in X,Y axis of attacking the lower-leg when performing uchimata was showed that the resistance level displayed more different than posture, but Z axis the largest, in kake(E3) phase in 0% resistance of DP than other variables as same thigh-leg, and the largest from tsukuri(set-up:E2) to kake(E3) phase. X and Z axis Angular momentum of supporting the thigh-leg were similar, regardless of posture and resistance of uke, but Y axis was resistance level. Angular momentum of supporting the thigh-leg was showed the largest in X axis, increased from EO event to E2, and decreased in E3, and angular momenta of Y, X axis were showed the largest in kuzushi(balance breaking) phase when performing uchimata. Angular momentum of supporting the lower leg were similar pattern, regardless of posture and resistance of uke, in Y axis, resistance displayed more difficult the position in NP, and showed opposite angular momentum in tsukuri phase. In conclusion, angular momentum of trunk when performing uchimata was showed the largest, and pattern was similar, regardless of posture than resistant of uke(reciver), magnitude and direction were different each other, and uchimata was Ashi -waza(foot and leg techniques) division but important of trunk action.

그라인딩 작업시 손목자세별 국소진동 전달특성 분석 (An Analysis of Transmitted-Vibration Characteristics by Different Wrist Posture during Grinding Tasks)

  • 황성환;이동춘
    • 대한인간공학회지
    • /
    • 제26권1호
    • /
    • pp.29-37
    • /
    • 2007
  • This study was performed to evaluate the characteristics of transmitted vibration to hand-arm system under different work posture while operating a light-weighted powered hand grinder. For the experiment, 8 different types of wrist posture (natural, unlar-flexion, radual-flexion, flexion, extension, complex posture, and etc.) and 3 types of feed force (20[N], 50[N], 70[N]) were considered. 10 male subjects were employed to polish metal plate with a hand grinder. All of them were normal and healthy with no history and symptom of the work related musculoskeletal disorders in the dominant hand. Vibration acceleration data were recorded with sampling rate, 2048[Hz]. In addition, unweighted overall R.M.S. acceleration at the tool and wrist, and transmissibility between them were used to evaluate factors from the recorded tri-axial vibration acceleration. The results indicate that transmissibility of natural wrist posture was significantly higher than others. In addition, as the feed force becomes larger, the vibration was transmitted in large quantities to hand-arm system through radius.

뇌성마비 환자의 자세 차이가 호흡 기능에 미치는 영향 (Effects of Posture Difference on the Respiratory Function of Cerebral Palsy Patients)

  • 윤창교
    • 대한통합의학회지
    • /
    • 제5권1호
    • /
    • pp.85-92
    • /
    • 2017
  • Purpose : The purpose of this study was to investigate the effect of posture difference on respiratory function in cerebral palsy patients. Methods : Twenty-two cerebral palsy childrens were recruited this study. Respiratory Function test was measured with Cardio Touch 3000 and Micro Respiratory Pressure Meter. Cardio Touch 3000 was used to assess cerebral palsy childrens' forced vital capacity and forced expiratory volume at one second. Micro Respiratory Pressure Meter was to assess Maximum inspiratory pressure and Maximum expiratory pressure. Subjects had four respiratory functions measured in supine, slouched sitting, and elected sitting postures. Statistical analysis was used Paired t-test for within-group comparisons and Independent t-test for between-group comparisons. SPSS statistics Ver 20.0 was used for statistical anlysis and statistical significance was defined as a p-value less than 0.05. Result : The subjects' respiratory function according to posture showed significant difference in Forced Vital Capacity(FVC), Maximum Expiratory Pressure(MEP) and Maximum inspiratory pressure(MIP)(p<.05). Elected sitting posture had a positive effect on respiratory function than slouched sitting, supine. Conclusion : In conclusion, We could see that change of posture in children with cerebral palsy affects respiratory function and Elected sitting can be a positive help for the respiratory function of children with cerebral palsy.

좌식 작업에 있어서 슬관절 각도 변화에 따른 하지 근력 및 압력분포 분석에 관한 연구 (An Analysis on Muscle Strength of Lower-extremity and Pressure Distribution in Sitting Posture)

  • 여민우;이동춘
    • 대한인간공학회지
    • /
    • 제27권1호
    • /
    • pp.53-60
    • /
    • 2008
  • The purpose of this study is to provide basic data, such as exerting muscle power of the lower-extremity, EMG test and pressure distribution for designing ergonomic workstation in sitting posture. The exerting muscle power of the lower-extremity was measured by PRIMUS in 4 postures of 90$^{\circ}$, 120$^{\circ}$, 150$^{\circ}$ and 180$^{\circ}$. And performed ANOVA test on Max. and Mean 100%MVC. In EMG test for surveying muscle mobiligation, 5 muscles(Rectus Femoris, Vastus Lateralis, Gastrocnemius, Soleus, Tibialis Anterior) were employed. Additional experiment in pressure distribution in sitting posture by Pliance(16$\time$16 poles), Max. pressure was measured and performed ANOVA test on the results. Concludingly, sitting posture with 120$^{\circ}$ lower-extremity is the best design criterion for ergonomic workstation in sitting posture.

운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구 (Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring)

  • 심광민;서정환
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

A Compensation Control Method Using Neural Network for Mechanical Deflection Error in SCARA Robot with Random Payload

  • Lee, Jong Shin
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.7-16
    • /
    • 2011
  • This study proposes the compensation method for the mechanical deflection error of a SCARA robot. While most studies on the related subject have dealt with the development of a control algorithm for improvement of robot accuracy, this study presents the control method reflecting the mechanical deflection error which is predicted in advance. The deflection at the end of the gripper of SCARA robot is caused by the self-weights and payloads of Arm 1, Arm 2 and quill. If the deflection is constant even though robot's posture and payload vary, there may not be a big problem on robot accuracy because repetitive accuracy, that is relative accuracy, is more important than absolute accuracy in robot. The deflection in the end of the gripper varies as robot's posture and payload change. That's why the moments $M_x$, $M_y$ and $M_z$ working on every joint of a robot vary with robot's posture and payload size. This study suggests the compensation method which predicts the deflection in advance with the variations in robot's posture and payload using neural network. To do this, I chose the posture of robot and the payloads at random, found the deflections by the FEM analysis, and then on the basis of this data, made compensation possible by predicting deflections in advance successively with the variations in robot's posture and payload through neural network learning.

경직형 양하지 뇌성마비 아동의 전방머리자세와 신체기능간의 상관관계 (Study on the Correlation Between Physical Function and Forward Head Posture in Spastic Diplegia)

  • 조영은;이은주
    • PNF and Movement
    • /
    • 제19권2호
    • /
    • pp.163-172
    • /
    • 2021
  • Purpose: This study investigated the correlation between physical function and forward head posture in spastic diplegia. Methods: The subjects of this study were 10 spastic diplegia patients. We took pictures of the subjects' craniovertebral angle with a digital camera to determine the degree of forward head posture and then analyzed them using the NIH image J program. The physical function test used the TCMS, the BBT, and a spirometer. The data in this study were measured using SPSS version 23.0, and the statistical significance level α was 0.05. A Pearson correlation coefficient analysis was performed to identify the correlation between the degree of the subject's head forward position and physical function. Results: When we performed the BBT and spirometer tests, the subjects' forward head postures were not correlated (p < 0.05). However, with the TCMS, there was a strong correlation between the forward position of the head and balance, with balance decreasing as the head position increased (p < 0.05). Conclusion: Spastic diplegia patients with severe forward head posture showed problems with static balance, dynamic balance, and equilibrium reaction when sitting. Intervention on the right posture and preventive activities will be needed to improve the health of spastic diplegia patients and prevent future problems with physical function.