• Title/Summary/Keyword: Posture Stability

Search Result 211, Processing Time 0.025 seconds

Comparison of Muscle Activities Serratus Anterior and Upper Trapezius Muscle During Scapular Protraction in Quadruped Position at Legs Difference (네발기기 자세에서 어깨뼈 내밈 운동시 다리들기에 따른 앞톱니근과 위등세모근의 근활성도 비교)

  • Kim, Hee-gon;Hwang, Byeong-jun;Kim, Jong-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Background: This study was conducted to investigate the effect of leg lift difference on the serratus anterior muscle and the upper trapezius muscle when a subject with winged scapula performs a scapula protraction exercise in a four-leg crawling posture. Method: Twenty normal adults and 20 subjects with winged scapula participated in the experiment. Surface EMG recordings were collected from serratus anterior muscle and back trapezius muscle during scapula protraction exercises. Scapular winging is measured with the lifting distance of scapula retraction to the back using an electronic digital caliper. In two groups of four-leg crawling posture, the two legs support, the dominant leg lifting, and the non-dominant leg lifting, including the scapula protraction, were performed. To examine the difference between groups in the variance analysis, the Bonferroni correction was used (significance level ${\alpha}=.017$). Statistical significance level ${\alpha}$ was .05. Results: There was a significant difference in serratus anterior muscle and upper trapezius muscle during push-up plus exercise in leg lifting in four-leg crawling posture, but there were no significant differences in muscle activity between serratus anterior muscle and upper trapezius muscle, and there was no significant difference according to the presence or absence of scapular winging. Conclusion: For the shoulder stability of the ipsilateral side with the serratus anterior muscle, the leg-lifting posture is effective in the four-leg crawling, and also when a subject with winged scapula chooses an exercise, lifting the ipsilateral side of leg with scapula protraction exercises at the same time may have a positive effect on scapula dysfunction.

Change of Head Position and Muscle Activities of Neck During Overhead Arm Lift Test in Subjects With Forward Head Posture

  • Kim, Tae-ho;Hwang, Byoung-ha
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2019
  • Background: Forward head posture (FHP) is a postural alignment of the cervical vertebrae that leads to increased gravitational load on cervical segmental motions. The overhead arm lift test assesses the ability to actively dissociate and control low cervical flexion and move the shoulders through overhead flexion. Objects: The purpose of this study was to explore muscle activities in the upper trapezius (UT), serratus anterior (SA), sternocleidomastoid (SCM), and lower trapezius (LT) alongside changes in head position during the overhead arm lift test in individuals with FHP. Methods: Fifteen subjects with forward head posture and fifteen subjects with normal subjcects were enrolled in this study. The patients performed the overhead arm lift test, and muscle activities of the UT, SCM, SA, and LT were measured using surface electromyography and by evaluating changes in head position. Independent t-tests were used to detect significant differences between the two groups and Cohen's d was calculated to measure the size of the mean difference between the groups. Results: The FHP group demonstrated significantly increased muscle activity of the UT ($32.46{\pm}7.64$), SCM ($12.79{\pm}4.01$), and LT ($45.65{\pm}10.52$) and significantly decreased activity in the SA ($26.65{\pm}6.15$) than the normal group. The change in head position was significantly higher in the FHP group ($6.66{\pm}2.08$) than the normal group. Effect sizes for all parameters assessed were large between the two groups. Conclusion: The subjects with excessive FHP displayed were unable to fix their heads in position during the overhead arm lift test. The overhead arm lift test can thus be used in clinical settings to confirm control of the neck in these subjects.

The Effect of Shoulder Stabilization Exercise and Core Stabilization Exercise on the Shoulder Height and Respiratory Function in Young Adults with Round Shoulder Posture

  • Mi-Kyoung Kim;Beom-Cheol Jeong;Kyung-Tae Yoo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2023
  • PURPOSE: The purpose of this study was to compare how the shoulder height and respiratory function are affected by applying shoulder stabilization exercises and core stabilization exercises that are effective for strengthening the trunk muscles and postural stability for adults with a round shoulder posture (RSP). METHODS: The participants were 28 young adults with RSP. They were assigned randomly to two groups: shoulder stabilization exercise and core stabilization exercise. They performed the exercises for 30 minutes twice a week for four weeks. They measured the shoulder height and respiratory function before and after exercise. RESULTS: No significant difference in shoulder height was found between the groups. A significant decrease in shoulder height was found in the shoulder stabilization exercise group after exercise. The core stabilization exercise group showed a significant decrease after exercise. In respiratory function, no significant difference was found between the groups. The forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were increased significantly in the shoulder stabilization exercise group before and after exercise. The FEV1, FEV1/FVC, and peak expiratory flow were significantly higher in the shoulder stabilization exercise group after exercise than in the core stabilization exercise group. CONCLUSION: Shoulder stabilization exercise and core stabilization exercise improved the postural alignment and pulmonary function, and the exercises could be helpful in shoulder rehabilitation as well as the clinical part of the treatment of rounded shoulder posture.

Natural Resolution of DOF Redundancy in Execution of Robot Tasks;Stability on a Constraint Manifold

  • Arimoto, S.;Hashiguchi, H.;Bae, J.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.180-185
    • /
    • 2003
  • In order to enhance dexterity in execution of robot tasks, a redundant number of degrees-of-freedom (DOF) is adopted for design of robotic mechanisms like robot arms and multi-fingered robot hands. Associated with such redundancy in the number of DOFs relative to the number of physical variables necessary and sufficient for description of a given task, an extra performance index is introduced for controlling such a redundant robot in order to avoid arising of an ill-posed problem of inverse kinematics from the task space to the joint space. This paper shows that such an ill-posedness of DOF redundancy can be resolved in a natural way by using a novel concept named “stability on a manifold”. To show this, two illustrative robot tasks 1) robotic handwriting and 2) control of an object posture via rolling contact by a multi-DOF finger are analyzed in details.

  • PDF

A Study on Stability of Excavator using ZMP (ZMP를 이용한 굴삭기의 안정성에 관한 연구)

  • Choi, Jong-Hwan;Um, Hyuk;Lim, Tae-Hyeong;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.86-92
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. When it works crane tasks, most of disasters happen. The stability of the excavator having crane function has a close relation with excavators posture, motion and load. In this paper, the stability of tipping-over has been analysed using zero Moment point(ZMP)

  • PDF

The Effect of Postural Stability on Genu Varum in Young Adults

  • Chae, Yun-Won;Park, Ji-Won;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.419-422
    • /
    • 2012
  • Purpose: Malalignment of the lower limbs may increases the difficulty of maintaining equilibrium. The purpose of this study was to study the effects of genu varum and poor posture in the sagittal plane on postural stability. Methods: We had 27 subjects with varus and 27 normal subjects participate in this study. Subjects for whom the distance between the medial epicondyles in the knee joint was more than 3 cm were classified as varus group, and subjects for whom the distance was less than 3 cm were classified as normal group. The measurements of static and dynamic stability were used overall stability index (OSI), anterioposterior stability index (APSI), and mediolateral stability index (MLSI) using a Biodex balance system. Results: When measuring the static stability index, there were significant differences in the mediolateral stability index between the varus and control groups. When measuring the dynamic stability index, there were significant differences in the overall, anteriorposterior, and mediolateral stability index between the varus and control groups. These results demonstrated that genu varum affects mediolateral movement in static stability, and overall, anterioposterior and mediolateral movements in dynamic stability. Conclusion: As genu varum affects static and dynamic stability in young adults, it increases the risk of injuries or falls. Exercise and surgery are required for realigning the genu varum. Future studies about postural stability in young children and elderly people who have a risk of falls due to lower postural control ability, are needed, as well as in young adults.

The Effect of Balance training on the BMI and Recovery of the Balance capability in Stroke patient with Obesity (균형 트레이닝이 비만 뇌졸중 환자의 체성분과 균형능력에 미치는 영향)

  • Wan-Young Yoon
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2024
  • The purpose of this study was to examine the impact of balance training on the Inbody and recovery of the balance capability in stroke patient with obesity. The exercise program was to conduct obesity group and normal weight group, 22 subjects were divided equally into experimental(obesity) and controlled group(normal weight), assigned to excercise using the balance training system for 30min a day and 5 days a week. Every pre and post-experimental data of both groups were gathered by Inbody and BSS(Biodex Medical Systems) for 8 weeks. As a result, Comparing the intra-group data measured by Inbody, obesity group showed significant difference in every parameter (p<.05). In the inter-group data, every parameter showed significant difference between both groups (p<.05). Comparing the intra-group data of LOS(Limits Of Stability), obesity group showed significant difference with all parameters, except with 'Backward' and 'Left' (p<.05). In the inter-group data, 'Forward' parameter showed significant difference. Comparing the intra-group data of PS(Postural Stability), obesity group showed significant difference with all parameters (p<.05). The inter-group PS(Postural Stability) results differed significantly only with 'Med/lat'(p=.000). The above results implicate about the following conclusions that the balance training had a big effect on the Inbody and recovery of the balance capability in stroke patient with obesity.

On the ZMP of biped robot (Visualization of ZMP)

  • Sung, Sang-Hak;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.137.3-137
    • /
    • 2001
  • Many locomotion purpose robots are being built and are under research such as mobile manipulator and biped humanoid robot, etc. Dynamic posture stability of these robots is based on the ZMP point. For getting stable ZMP trajectory, some method has been developed but is too complex and time consuming which leads to inability in generating on-line ZMP trajectory. In this paper, we give a qualitative study about behavior of ZMP in biped walking robot through visualization. This result gives intuitive understanding about behavior of ZMP under various robot state.

  • PDF

Landing Motion Analysis of Human-Body Model Considering Impact and ZMP Condition (충격과 ZMP 조건을 고려한 인체 모델의 착지 동작 해석)

  • So Byung Rok;Kim Wheekuk;Yi Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper deals with modeling and analysis fer the landing motion of a human-body model. First, the dynamic model of a floating human body is derived. The external impulse exerted on the ground as well as the internal impulse experienced at the joints of the human body model is analyzed. Second, a motion planning algorithm exploiting the kinematic redundancy is suggested to ensure stability in terms of ZMP stability condition during a series of landing phases. Four phases of landing motion are investigated. In simulation, the external and internal impulses experienced at the human joints and the ZMP history resulting from the motion planning are analyzed for two different configurations. h desired landing posture is suggested by comparison of the simulation results.

Control System Design of Pelvis Platform for Biped Walking Stability (이족보행 안전성을 위한 골반기구의 제어시스템 설계)

  • Kim, Su-Hyeon;Yang, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.306-314
    • /
    • 2009
  • The pelvis platform is the mechanical part which accomplishes the activities of diminishing the disturbances from the lower body and maintaining a balanced posture. When a biped robot walks, a lot of disturbances and irregular vibrations are generated and transmitted to the upper body. As there are some important machines and instruments in the upper body or head such as CPU, controller units, vision system, etc., the upper part should be isolated from disturbances or vibrations to functions properly and finally to improve the biped stability. This platform has 3 rotational degrees of freedom and is able to maintain balanced level by feedback control system. Some sensors are fused for more accurate estimation and the control system which integrates synchronization and active filtering is simulated on the virtual environment.