• Title/Summary/Keyword: Post-quantum cryptosystem

Search Result 12, Processing Time 0.019 seconds

A Study on Attack against NTRU Signature Implementation and Its Countermeasure (NTRU 서명 시스템 구현에 대한 오류 주입 공격 및 대응 방안 연구)

  • Jang, Hocheol;Oh, Soohyun;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.551-561
    • /
    • 2018
  • As the computational technology using quantum computing has been developed, several threats on cryptographic systems are recently increasing. Therefore, many researches on post-quantum cryptosystems which can withstand the analysis attacks using quantum computers are actively underway. Nevertheless, the lattice-based NTRU system, one of the post-quantum cryptosystems, is pointed out that it may be vulnerable to the fault injection attack which uses the weakness of implementation of NTRU. In this paper, we investigate the fault injection attacks and their previous countermeasures on the NTRU signature system and propose a secure and efficient countermeasure to defeat it. As a simulation result, the proposed countermeasure has high fault detection ratio and low implementation costs.

A Study of SPA Vulnerability on 8-bit Implementation of Ring-LWE Cryptosystem (8 비트 구현 Ring-LWE 암호시스템의 SPA 취약점 연구)

  • Park, Aesun;Won, Yoo-Seung;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.439-448
    • /
    • 2017
  • It is news from nowhere that post-quantum cryptography has side-channel analysis vulnerability. Side-channel analysis attack method and countermeasures for code-based McEliece cryptosystem and lattice-based NTRU cryptosystem have been investigated. Unfortunately, the investigation of the ring-LWE cryptosystem in terms of side-channel analysis is as yet insufficient. In this paper, we propose a chosen ciphertext simple power analysis attack that can be applied when ring-LWE cryptography operates on 8-bit devices. Our proposed attack can recover the key only with [$log_2q$] traces. q is a parameter related to the security level. It is used 7681 and 12289 to match the common 128 and 256-bit security levels, respectively. We identify the vulnerability through experiment that can reveal the secret key in modular add while the ring-LWE decryption performed on real 8-bit devices. We also discuss the attack that uses a similarity measurement method for two vectors to reduce attack time.

Countermeasure against Chosen Ciphertext Spa Attack of the Public-Key Cryptosystem Based on Ring-Lwe Problem (Ring-LWE 기반 공개키 암호시스템의 선택 암호문 단순전력분석 공격 대응법)

  • Park, Aesun;Won, Yoo-Seung;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1001-1011
    • /
    • 2017
  • A lattice-based cryptography is known as one of the post-quantum cryptographies. Ring-LWE problem is an algebraic variant of LWE, which operates over elements of polynomial rings instead of vectors. It is already known that post-quantum cryptography has side-channel analysis vulnerability. In 2016, Park et al. reported a SPA vulnerability of the public key cryptosystem, which is proposed by Roy et al., based on the ring-LWE problem. In 2015 and 2016, Reparaz et al. proposed DPA attack and countermeasures against Roy cryptosystem. In this paper, we show that the chosen ciphertext SPA attack is also possible for Lyubashevsky cryptosystem which does not use NTT. And then we propose a countermeasure against CCSPA(Chosen Ciphertext SPA) attack and we also show through experiment that our proposed countermeasure is secure.

Single Trace Side Channel Analysis on NTRUEncrypt Implementation (NTRUEncrypt에 대한 단일 파형 기반 전력 분석)

  • An, Soojung;Kim, Suhri;Jin, Sunghyun;Kim, HanBit;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1089-1098
    • /
    • 2018
  • As the development of quantum computers becomes visible, the researches on post-quantum cryptography to alternate the present cryptography system have actively pursued. To substitute RSA and Elliptic Curve Cryptosystem, post-quantum cryptography must also consider side channel resistance in implementation. In this paper, we propose a side channel analysis on NTRU, based on the implementation made public in the NIST standardization. Unlike the previous analysis which exploits a thousands of traces, the proposed attack can recover the private key using a single power consumption trace. Our attack not only reduces the complexity of the attack but also gives more possibility to analyze a practical public key cryptosystem. Furthermore, we suggested the countermeasure against our attacks. Our countermeasure is much more efficient than existing implementation.

A NTRU-based Authentication and Key Distribution Protocol for SIP (SIP에서 NTRU 기반 인증 및 키 분배 프로토콜)

  • Jeong, SeongHa;Park, KiSung;Lee, KyungKeun;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1768-1775
    • /
    • 2017
  • The SIP(Session Initiation Protocol) is an application layer call signaling protocol which can create, modify and terminate the session of user, and provides various services in combination with numerous existing protocols. However, most of cryptosystems for SIP cannot prevent quantum computing attack because they have used ECC(Elliptic Curve Cryptosystem). In this paper, we propose a NTRU based authentication and key distribution protocol for SIP in order to protect quantum computing attacks. The proposed protocol can prevent various attacks such as quantum computing attack, server spoofing attack, man-in-the middle attack and impersonation attack anonymity, and our protocol can provide user's anonymity.

Single Trace Analysis against HyMES by Exploitation of Joint Distributions of Leakages (HyMES에 대한 결합 확률 분포 기반 단일 파형 분석)

  • Park, ByeongGyu;Kim, Suhri;Kim, Hanbit;Jin, Sunghyun;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1099-1112
    • /
    • 2018
  • The field of post-quantum cryptography (PQC) is an active area of research as cryptographers look for public-key cryptosystems that can resist quantum adversaries. Among those categories in PQC, code-based cryptosystem provides high security along with efficiency. Recent works on code-based cryptosystems focus on the side-channel resistant implementation since previous works have indicated the possible side-channel vulnerabilities on existing algorithms. In this paper, we recovered the secret key in HyMES(Hybrid McEliece Scheme) using a single power consumption trace. HyMES is a variant of McEliece cryptosystem that provides smaller keys and faster encryption and decryption speed. During the decryption, the algorithm computes the parity-check matrix which is required when computing the syndrome. We analyzed HyMES using the fact that the joint distributions of nonlinear functions used in this process depend on the secret key. To the best of our knowledge, we were the first to propose the side-channel analysis based on joint distributions of leakages on public-key cryptosystem.

Efficient Multi-Bit Encryption Scheme Using LWE and LWR (LWE와 LWR을 이용한 효율적인 다중 비트 암호화 기법)

  • Jang, Cho Rong;Seo, Minhye;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1329-1342
    • /
    • 2018
  • Recent advances in quantum computer development have raised the issue of the security of RSA and elliptic curve cryptography, which are widely used. In response, the National Institute of Standards and Technology(NIST) is working on the standardization of public key cryptosystem which is secure in the quantum computing environment. Lattice-based cryptography is a typical post-quantum cryptography(PQC), and various lattice-based cryptographic schemes have been proposed for NIST's PQC standardization contest. Among them, EMBLEM proposed a new multi-bit encryption method which is more intuitive and efficient for encryption and decryption phases than the existing LWE-based encryption schemes. In this paper, we propose a multi-bit encryption scheme with improved efficiency using LWR assumption. In addition, we prove the security of our schemes and analyze the efficiency by comparing with EMBLEM and R.EMBLEM.

Accelerated Implementation of NTRU on GPU for Efficient Key Exchange in Multi-Client Environment (다중 사용자 환경에서 효과적인 키 교환을 위한 GPU 기반의 NTRU 고속구현)

  • Seong, Hyoeun;Kim, Yewon;Yeom, Yongjin;Kang, Ju-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.481-496
    • /
    • 2021
  • It is imperative to migrate the current public key cryptosystem to a quantum-resistance system ahead of the realization of large-scale quantum computing technology. The National Institute of Standards and Technology, NIST, is promoting a public standardization project for Post-Quantum Cryptography(PQC) and also many research efforts have been conducted to apply PQC to TLS(Transport Layer Security) protocols, which are used for Internet communication security. In this paper, we propose a scenario in which a server and multi-clients share session keys on TLS by using the parallelized NTRU which is PQC in the key exchange process. In addition, we propose a method of accelerating NTRU using GPU and analyze its efficiency in an environment where a server needs to process large-scale data simultaneously.

An Implementation of Supersingular Isogeny Diffie-Hellman and Its Application to Mobile Security Product (초특이 아이소제니 Diffie-Hellman의 구현 및 모바일 보안 제품에서의 응용)

  • Yoon, Kisoon;Lee, Jun Yeong;Kim, Suhri;Kwon, Jihoon;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • There has been increasing interest from NIST and other companies in studying post-quantum cryptography in order to resist against quantum computers. Multivariate polynomial based, code based, lattice based, hash based digital signature, and isogeny based cryptosystems are one of the main categories in post quantum cryptography. Among these categories, isogeny based cryptosystem is known to have shortest key length. In this paper, we implemented Supersingular Isogeny Diffie-Hellman (SIDH) protocol efficiently on low-end mobile device. Considering the device's specification, we select supersingular curve on 523 bit prime field, and generate efficient isogeny computation tree. Our implementation of SIDH module is targeted for 32bit environment.

Circulant UOV: a new UOV variant with shorter private key and faster signature generation

  • Peng, Zhiniang;Tang, Shaohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1376-1395
    • /
    • 2018
  • UOV is one of the most important signature schemes in Multivariate Public Key Cryptography (MPKC). It has a strong security guarantee and is considered to be quantum-resistant. However, it suffers from large key size and its signing procedure is relatively slow. In this paper, we propose a new secure UOV variant (Circulant UOV) with shorter private key and higher signing efficiency. We estimate that the private key size of Circulant UOV is smaller by about 45% than that of the regular UOV and its signing speed is more than 14 times faster than that of the regular UOV. We also give a practical implementation on modern x64 CPU, which shows that Circulant UOV is comparable to many other signature schemes.