This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.
The fundamental basis of AI technology is learningable data. Recently, the types and amounts of data collected and produced by the government or private companies are increasing exponentially, however, verified data that can be used for actual machine learning has not yet led to it. This study discusses the conditions that data actually can be used for machine learning should meet, and identifies factors that degrade data quality through case studies. To this end, two representative cases of developing a prediction model using public big data was selected, and data for actual problem solving was collected from the public data portal. Through this, there is a difference from the results of applying valid data screening criteria and post-processing. The ultimate purpose of this study is to argue the importance of data quality management that must be most fundamentally preceded before the development of machine learning technology, which is the core of artificial intelligence, and accumulating valid data.
Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.
Kim, Ki-Won;Lee, Eul-Kyu;Jeong, Hoi-Woun;Son, Jin-Hyun;Kang, Byung-Sam;Kim, Hyun-Soo;Min, Jung-Whan
Journal of radiological science and technology
/
v.40
no.2
/
pp.197-203
/
2017
The purpose of this study was to measure signal to noise ratio (SNR) according to change of equalization from region of interest (ROI) of heart shadow in chest image. We examined images of chest image of 87 patients in a University-affiliated hospital, Seoul, Korea. Chest images of each patient were calculated by using ImageJ. We have analysis socio-demographical variables, SNR according to images, 95% confidence according to SNR of difference in a mean of SNR. Differences of SNR among change of equalization were tested by SPSS Statistics21 ANOVA test for there was statistical significance 95%(p < 0.05). In SNR results, with the quality of distributions in the order of original chest image, original chest image heart shadow and equalization chest image, equalization chest image heart shadow(p < 0.001). In conclusion, this study would be that quantitative evaluation of heart shadow on chest image can be used as an adjunct to the histogram equalization chest image.
Wide Area Differential GNSS(WA-DGNSS) was developed in order to improve the accuracy and integrity performance of GNSS. In this paper, overall structure of Pseudolite-Based Augmentation System(PBAS) and experimental methods which enables the post-processing test with commercial receiver will be described. For generating augmenting message, GPS measurement collected from five NDGPS reference stations were processed by reference station S/W and master station S/W. The accuracy of augmenting message was tested by comparing SP3, IONEX data. In the test, RF signal of user was collected and correction data were generated. After that, RF signal was broadcasted with pseudolite signal. Test was conducted using three commercial receiver and the performance was compared with MSAS and standalone user. From the position output of each receiver, it was shown that improved position was obtained by applying augmenting message.
Yin, Yongyi;Sahu, B.B.;Lee, J.S.;Kim, H.R.;Han, Jeon G.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.341-341
/
2016
The discovery of light emission in nanostructured silicon has opened up new avenues of research in nano-silicon based devices. One such pathway is the application of silicon quantum dots in advanced photovoltaic and light emitting devices. Recently, there is increasing interest on the silicon quantum dots (c-Si QDs) films embedded in amorphous hydrogenated silicon-nitride dielectric matrix (a-SiNx: H), which are familiar as c-Si/a-SiNx:H QDs thin films. However, due to the limitation of the requirement of a very high deposition temperature along with post annealing and a low growth rate, extensive research are being undertaken to elevate these issues, for the point of view of applications, using plasma assisted deposition methods by using different plasma concepts. This work addresses about rapid growth and single step development of c-Si/a-SiNx:H QDs thin films deposited by RF (13.56 MHz) and ultra-high frequency (UHF ~ 320 MHz) low-pressure plasma processing of a mixture of silane (SiH4) and ammonia (NH3) gases diluted in hydrogen (H2) at a low growth temperature ($230^{\circ}C$). In the films the c-Si QDs of varying size, with an overall crystallinity of 60-80 %, are embedded in an a-SiNx: H matrix. The important result includes the formation of the tunable QD size of ~ 5-20 nm, having a thermodynamically favorable <220> crystallographic orientation, along with distinct signatures of the growth of ${\alpha}$-Si3N4 and ${\beta}$-Si3N4 components. Also, the roles of different plasma characteristics on the film properties are investigated using various plasma diagnostics and film analysis tools.
Kim, Eden;Jang, Hyemin;Shin, Sungho;Jeong, Sungho;Hwang, Euiseok
Resources Recycling
/
v.27
no.1
/
pp.84-91
/
2018
In this study, a novel soft information based most probable classification scheme is proposed for sorting recyclable metal alloys with laser induced breakdown spectroscopy (LIBS). Regression analysis with LIBS captured spectrums for estimating concentrations of common elements can be efficient for classifying unknown arbitrary metal alloys, even when that particular alloy is not included for training. Therefore, partial least square regression (PLSR) is employed in the proposed scheme, where spectrums of the certified reference materials (CRMs) are used for training. With the PLSR model, the concentrations of the test spectrum are estimated independently and are compared to those of CRMs for finding out the most probable class. Then, joint soft information can be obtained by assuming multi-variate normal (MVN) distribution, which enables to account the probability measure or a prior information and improves classification performance. For evaluating the proposed schemes, MVN soft information is evaluated based on PLSR of LIBS captured spectrums of 9 metal CRMs, and tested for classifying unknown metal alloys. Furthermore, the likelihood is evaluated with the radar chart to effectively visualize and search the most probable class among the candidates. By the leave-one-out cross validation tests, the proposed scheme is not only showing improved classification accuracies but also helpful for adaptive post-processing to correct the mis-classifications.
Due to the 4th Industrial Revolution and the Digital Revolution, many changes are being made in the manufacturing method and structure in the field of plastic arts and crafts. Therefore, in this study, we tried to present a new work method suitable for this era by effectively utilizing the digital technology called 3D printer. For this study, first of all, the theoretical background of 3D printing technology was understood, and prior studies on the use cases of 3D printing technology were summarized. Based on this, three types of craft molds were produced using a 3D printer. As a result of the study, there were characteristics that appear respectively depending on the thickness or overlapping of the craft molds using 3D printing technology. First, in the case of the thickness of the craft molds, the thinner the strength, the weaker the strength, but there was an advantage in that it was easier to take out the contents of the molds. However, it was determined that the thick craft molds was stable to contain the dense and heavy material. Second, in the case of overlapping of craft molds, the advantages of both thin and thick molds were obtained as a result of using a double-layered molds. However, there was a disadvantage that the surface of the contents taken out was not smooth, so that post-processing was necessary. In future research, I hope to deal with the material of the filament used in 3D printers.
Park, Jin-Yeong;Shim, Hyungwon;Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Yoo, Seong-Yeol;Jeong, Woo-Young
Journal of Ocean Engineering and Technology
/
v.31
no.1
/
pp.69-79
/
2017
This paper presents the operations of a multi-beam echo sounder (MBES) installed on the deep-sea remotely operated vehicle (ROV) Hemire. Hemire explored hydrothermal vents in the Forecast volcano located near the Mariana Trench in March of in 2006. During these explorations, we acquired profiling points on the routes of the vehicle using the MBES. Information on the position, depth, and attitude of the ROV are essential to obtain higher accuracy for the profiling quality. However, the MBES installed on Hemire does not have its own position and depth sensors. Although it has attitude sensors for roll, pitch, and heading, the specifications of these sensors were not clear. Therefore, we had to merge the high-performance sensor data for the motion and position obtained from Hemire into the profiling data of the MBES. Then, we could properly convert the profiling points with respect to the Earth-fixed coordinates. This paper describes the integration of the MBES with Hemire, as well as the coordinate conversion between them. Bathymetric maps near the summit of the Forecast volcano were successfully collected through these processes. A comparison between the bathymetric maps from the MBES and those from the Onnuri Research Vessel, the mother ship of the ROV Hemire for these explorations, is also presented.
Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
Journal of the Korea institute for structural maintenance and inspection
/
v.27
no.2
/
pp.17-24
/
2023
A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.