• Title/Summary/Keyword: Post-initial failure

Search Result 51, Processing Time 0.024 seconds

Alternatives to Enhance Flat Slab Ductility

  • Husain, Mohamed;Eisa, Ahmed S.;Roshdy, Ramy
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.161-169
    • /
    • 2017
  • Flat slab systems are vastly used in multi-story buildings because of their savings in story height and construction time, as well as for their flexibility in architectural remodeling. However, they frequently suffer brittle punching-shear failure around columns, especially when subjected to lateral loads. Therefore, seismic codes labeled flat slabs as non-ductile systems. This research goal is investigating some construction alternatives to enhance flat slab ductility and deformability. The alternatives are: adding different types of punching-shear reinforcement, using discreet fibers in concrete mixes, and increasing thickness of slab around columns. The experimental study included preparation and testing of seven half-scale interior slab-column connections up to failure. The first specimen is considered a reference, the second two specimens made of concrete mixes with different volumetric ratios of polymer fibers. Another three specimens reinforced with different types of punching-shear reinforcement, and the last specimen constructed with drop panel of inverted pyramidal shape. It is found that using the inverted pyramid-shape drop panel of specimen, increases the punching-shear capacity, and the initial and the post-cracking stiffnesses. The initial elastic stiffnesses are different for all specimens especially for the slab with closed stirrups where it is experienced the highest initial stiffness compared to the reference slab.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Endoscopic Third Ventriculostomy in Patients with Shunt Malfunction

  • Lee, Seung-Hoon;Kong, Doo-Sik;Seol, Ho-Joon;Shin, Hyung-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.4
    • /
    • pp.217-221
    • /
    • 2011
  • Objective : This paper presents data from a retrospective study of endoscopic third ventriculostomy (ETV) in patients with shunt malfunction and proposes a simple and reasonable post-operative protocol that can detect ETV failure. Methods : We enrolled 19 consecutive hydrocephalus patients (11 male and 8 female) who were treated with ETV between April 2001 and July 2010 after failure of previously placed shunts. We evaluated for correlations between the success rate of ETV and the following parameters : age at the time of surgery, etiology of hydrocephalus, number of shunt revisions, interval between the initial diagnosis of hydrocephalus or the last shunt placement and ETV, and the indwelling time of external ventricular drainage. Results : At the time of ETV after shunt failure, 14 of the 19 patients were in the pediatric age group and 5 were adults, with ages ranging from 14 months to 42 years (median age, 12 years). The patients had initially been diagnosed with hydrocephalus between the ages of 1 month 24 days and 32 years (median age, 6 years 3 months). The etiology of hydrocephalus was neoplasm in 7 patients; infection in 5; malformation, such as aqueductal stenosis or megacisterna magna in 3; trauma in 1; and unknown in 3. The overall success rate during the median follow-up duration of 1.4 years (9 days to 8.7 years) after secondary ETV was 68.4%. None of the possible contributing factors for successful ETV, including age (p=0.97) and the etiology of hydrocephalus (p=0.79), were statistically correlated with outcomes in our series. Conclusion: The use of ETV in patients with shunt malfunction resulted in shunt independence in 68.4% of cases. Age, etiology of hydrocephalus, and other contributing factors were not statistically correlated with ETV success. External ventricular drainage management during the immediate post-ETV period is a good means of detecting ETV failure.

A Study of Error Analysis for Post Evaluation System on the Construction Projects (건설공사 사후평가시스템 입력오류 분석에 관한 연구)

  • Kim, Kyong-Hoon;Lee, Du-Heon;Kim, Tae-Yeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.77-85
    • /
    • 2015
  • The data are often missed and many errors of the data are generated in the input process for the post evaluation system on the construction projects, and the reliability of the data falls down much. Accordingly, the detailed analysis about missing and error of data was conducted to ensure reliability of the analysis results about post evaluation on the construction projects. As results in this study, a lot of input data were missed at the initial construction phase, and the data errors were found in the inaccuracy of reference reports, the lack of understanding about input data, and the failure of KRW unit.

Reoperation for congenital heart disease (선천성 심장기형에 대한 2차수술로서의 개심술)

  • Ahn, H.;Sung, S.W.;Kim, Y.J.;Roh, J.R.;Suh, K.P.
    • Journal of Chest Surgery
    • /
    • v.19 no.2
    • /
    • pp.280-287
    • /
    • 1986
  • Between March 1978 and August 1985, 29 cases at various congenital heart diseases were reoperated because of remnant shunt of residual anomalies at Seoul National University Hospital. They were consisted of 10 cases of Tetralogy, 4 simple VSD, 6 complicated VSD. 3 partial ECD, and 5 other rare congenital anomalies. The interval between the initial and the second procedure ranged from 1 day to 122 months [mean; 26.9 months]. In 4 cases of them, the second procedure was done during initial hospitalization within 3 weeks post-operatively. The primary operation intended to be corrective surgery except four whose primary operation was palliative or exploratory one even though it was done with extracorporeal circulation. The indication for second operation was mainly residual shunt or valvular obstruction due to patch detachment or inadequate relief of stenotic lesion. Others were paravalvular leak, valvuloplasty failure, prosthetic valve failure, and inadequate primary diagnosis. Four patients were dead [14.3%]; three complicated VSD`s and one Tetralogy. There were 7 cases of nonfatal complication with subsequent improvement except one [diffuse cerebral dysfunction].

  • PDF

Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis (평면변형률 시험에서 디지털 이미지 해석을 통한 정규압밀 점성토의 파괴거동 분석)

  • Kwak, Tae-Young;Kim, Joon-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.49-60
    • /
    • 2016
  • Soil failure is initiated and preceded by forming and progressing of shear band, defined as the localization of deformation into thin zones of soil mass. To understand the failure mechanism of normally consolidated cohesive soil, the spatial distribution and evolution of deformation within the entire specimen need to be evaluated. In this study, vertical compression tests under plane strain condition were performed on reconstituted kaolinite specimens, while capturing digital images of the specimen at regular intervals during shearing. Overall stress-strain behavior from initial to post peak has been analyzed together with spatial distributions of deformations and shear band characteristics from digital images at 4 stages.

Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening

  • Ma, Yihao;Cheng, Xiaoquan;Wang, Zhaodi;Guo, Xin;Zhang, Jie;Xu, Yahong
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • A 1/3 composite cylindrical shell with a central rectangular opening was axially compressed experimentally, and its critical buckling load and displacement, and strains were measured. A finite element model (FEM) of the shell with Hashin failure criteria was established to analyze its buckling and post-buckling behaviors by nonlinear Newton-Raphson method. The geometric imperfection sensitivity and the effect of side supported conditions of the shell were investigated. It was found that the Newton-Raphson method can be used to analyze the buckling and post-buckling behaviors of the shell. The shell is not sensitive to initial geometric imperfection. And the support design of the shell by side stiffeners is a good way to obtain the critical buckling load and simplify the experimental fixture.

RADIATION DAMAGE IN THE HUMAN BODY ACUTE RADIATION SYNDROME AND MULTIPLE ORGAN FAILURE

  • AKASHI, MAKOTO;TAMURA, TAIJI;TOMINAGA, TAKAKO;ABE, KENICHI;HACHIYA, MISAO;NAKAYAMA, FUMIAKI
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • Whole-body exposure to high-dose radiation causes injury involving multiple organs that depends on their sensitivity to radiation. This acute radiation syndrome (ARS) is caused by a brief exposure of a major part of the body to radiation at a relatively high dose rate. ARS is characterized by an initial prodromal stage, a latent symptom-free period, a critical or manifestation phase that usually takes one of four forms (three forms): hematologic, gastrointestinal, or cardiovascular and neurological (neurovascular), depending upon the exposure dose, and a recovery phase or death. One of the most important factors in treating victims exposed to radiation is the estimation of the exposure dose. When high-dose exposure is considered, initial dose estimation must be performed in order to make strategy decisions for treatment as soon as possible. Dose estimation can be based on onset and severity of prodromal symptoms, decline in absolute lymphocyte count post exposure, and chromosomal analysis of peripheral blood lymphocytes. Moreover, dose assessment on the basis of calculation from reconstruction of the radiation event may be required. Experience of a criticality accident occurring in 1999 at Tokai-mura, Japan, showed that ARS led to multiple organ failure (MOF). This article will review ARS and discuss the possible mechanisms of MOF developing from ARS.

Post Closure Long Term Safety of an Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장에서 초기 용기 파손 시나리오의 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.229-232
    • /
    • 2003
  • A waste container, one of the key compartments in a multi-barrier system for a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic strata and the swelling pressure of the bentonite buffer. Also, it prohibits potential release of radionuclides for a certain period of time. before it is corroded by impurities. Even though the materials of a waste container is carefully chosen and all manufacturing processes are under heavy quality assurance, there might be a slight chance of intial defects in a waste container. Also, during the deposition of a waste container in a repository, there might be a chance of an incident affecting the integrity of a waste container. In this study, the FEP's and the scenarios over radiological impact of a potential initial waste container defect was developed. Then the total system performance assessment on this initial waste container failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set studied in this paper, the annual individual dose by the ICF scenario well meets the KINS regulation.

  • PDF

A Study of Bearing Strength on Composite Pinned-Joint at Low Temperature (저온환경에서 복합재료 핀 연결부의 Bearing 강도에 관한 연구)

  • Her, N.I.;Lee, S.Y.;Kim, J.H.;Lee, Y.S.;Sa, J.W.;Cho, S.;Im, K.H.;Oh, Y.K.;Choi, C.H.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.413-418
    • /
    • 2001
  • Fundamental failure mode in a laminated composite pinned-joint is proposed to assess damage resulting from stress concentration in the plate. The joint area is a region with stress concentrations thus a complicated stress state exists. The modeling of damage in a laminated composite pinned-joint presents many difficulties because of the complexity of the failure process. In order to model progressive from initial to final, finite element methods are used rather than closed form stress analyses. Failure analysis must be a logical combination of suitable failure criteria and appropriate material properties degradation rules. In this study, the material properties which were obtained in previous study, the preparing process of the bearing strength test for a pinned joint CFRP composite plate subjected to in-plane loading at low temperature, and the FEM result of progressive damage model using ANSYS program are summarized to assess the structural safety of CFRP plate used in the magnetic supporting post of KSTAR(Korea Superconducting Tokamak Advanced Research).

  • PDF