• Title/Summary/Keyword: Post-emergence herbicide

Search Result 35, Processing Time 0.019 seconds

N-phenyl Substitutent Effect on the Herbicidal Activity of 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives against Rice Plant with Pre- and Post-emergence (발아 전 후 벼의 약해에 미치는 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들 중 N-phenyl치환기의 효과)

  • Lee, Sang-Ho;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Whan;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.52-56
    • /
    • 2000
  • The influence of the 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl- propionamide derivatives on the herbicide activities against rice plant with pre-emergence and post-emergence in down land were examined and the structure activity relationship (SAR) were analyzed by Free-Wilson and Hansch method. In pre-emergence, the SAR approach is shown that the optimal, $({\pi})_{opt}=0.91$, hydrophobicity with electron donating effect of the ortho substituted mono substituents and 2,3,4-substituted three substituents were found to be contribute the herbicidal activity. Whereas, in post-emergence, the optimal, ({\pi})_{opt}=0.50$, hydrophobicity with electron withdrawing effect of meta substituted mono subsituents and 2,3-substituted two substituents were found to be contribute the herbicide activity. The herbicide activities with post-emergence more increase than that of pre-emergence. It is assumed from the SAR equations that the 2-methyl-3-methoxy-4-cyano group substituent is selected as the most lowest herbicide activity against rice plant with post-emergence in green house. The hydrolysis reaction was proceeded through nucleophilic addition-elimination (Ad_{Nu-E})$ with the orbital control between LUMO of substrate and HOMO of water molecule. And molecular electrostatic potential (MEP) of none (H) substituent was discussed.

  • PDF

Improvement of Herbicide Use in Crop Production w. Growth Responses of Soybean (Glycine max) Cultivars to Application Time of Metribuzin Herbicide (제초제의 사용법 개발에 관한 연구 제4보 Metribuzin 사용시간에 따른 대두품종의 생육반응)

  • 구자옥;정순주;이종영
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.179-184
    • /
    • 1981
  • The study was conducted to know the differential growth responses of soybean cultivars as affected by various application stages of Metribuzin herbicide, at the University experimental farm of Chonnam Nat'l. Univ, Kwangjoo, 1980. Experimented soybean materials were six cultivars, as Kwanggyo, Dongbuktae, Bongui, Yukwoo 3, Suweon 85, and Suweon 86., . and Laid-out application stages were five as pre-sowing, Pre-emergence, Early Post-emergence, and Late Post-emergence treatment comparing with Control. Results obtained from the study were as follows: Among experimented soybean cultivars, no significantly tolerant cultivar was shown. Highly significant differences in phytotoxicities by Metribuzin treatments were detected among various application stages, and crop tolerances were recognized bigger in order as E. Post-emg. < L. Post-emg. $\ll$ Pre-emg. < Pre-sowing $\leq$ Control. The phytotoxic symptoms of all soybean cuitivars were severely recorded in order of Leaf No. /Plant < Plant height $\ll$ Branch No. /Plant. For the cultivation of most soybean cuitivars, the use of Metribuzin in Pre-sowing or Pre-emergence were recommended, and especially it is expected to follow of more detailed study on soil-incorporation method in Pre-sowing treatment, and rather the tank-mixture system of Metribuzin with others than the mono-application system for the safe-use and enlargement of weeding-spectrum.

  • PDF

Effect of Herbicide Combinations on Bt-Maize Rhizobacterial Diversity

  • Valverde, Jose R.;Marin, Silvia;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2014
  • Reports of herbicide resistance events are proliferating worldwide, leading to new cultivation strategies using combinations of pre-emergence and post-emergence herbicides. We analyzed the impact during a one-year cultivation cycle of several herbicide combinations on the rhizobacterial community of glyphosate-tolerant Bt-maize and compared them to those of the untreated or glyphosate-treated soils. Samples were analyzed using pyrosequencing of the V6 hypervariable region of the 16S rRNA gene. The sequences obtained were subjected to taxonomic, taxonomy-independent, and phylogeny-based diversity studies, followed by a statistical analysis using principal components analysis and hierarchical clustering with jackknife statistical validation. The resilience of the microbial communities was analyzed by comparing their relative composition at the end of the cultivation cycle. The bacterial communites from soil subjected to a combined treatment with mesotrione plus s-metolachlor followed by glyphosate were not statistically different from those treated with glyphosate or the untreated ones. The use of acetochlor plus terbuthylazine followed by glyphosate, and the use of aclonifen plus isoxaflutole followed by mesotrione clearly affected the resilience of their corresponding bacterial communities. The treatment with pethoxamid followed by glyphosate resulted in an intermediate effect. The use of glyphosate alone seems to be the less aggressive one for bacterial communities. Should a combined treatment be needed, the combination of mesotrione and s-metolachlor shows the next best final resilience. Our results show the relevance of comparative rhizobacterial community studies when novel combined herbicide treatments are deemed necessary to control weed growth.

Study for Sequential Application of Herbicide to Establish an Efficient Weed Control in Red Pepper Field (고추 밭 잡초 관리를 위한 제초제 체계 처리법 개발)

  • Min, Yi-Gi;So, Yoon-Sup
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.213-218
    • /
    • 2016
  • Timely application and the choice of herbicides are crucial for red pepper production since the yield is significantly reduced by weed occurrence. Experiments were conducted to provide efficient weed control methods in red-pepper fields. The results suggest the followings: 1) in the field of prevalent grass weeds, application of pendimethalin EC as pre-emergence herbicide after transplanting followed by tank-mix with pendimethalin and fluazipfop-P-butyl EC as post-emergence at 3-5 leaf stage of Digitalia species gave a good control for 80 days without crop injury, 2) as for grass and other weeds occurrence, sequential application of tank-mix with glufosinate-ammonium SL and pendimethalin at 30 days after transplanting (DAT) followed by glufosinate-ammonium. at < 20 cm of weed height with 30 days' interval provided better weed control than 2-time application of glufosinate-ammonium. single application for 80 days in this trial. 3) To prevent from drifting of non-selective herbicide spray mist into red-pepper at furrow application, glufosinate-ammonium. should be applied at 15 cm of spray nozzle height at 20 DAT (18 cm tall of red pepper), and the spray nozzle should be placed below 30 cm above ground to keep spray drift minimum to red pepper with > 40 cm plant height at 40 DAT.

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.

Mixing Pyroligneous Acids with Herbicides to Control Barnyardgrass (Echinochloa crus-galli)

  • Acenas, Xernan Sebastian;Nunez, John Paolo Panisales;Seo, Pil Dae;Ultra, Venecio Uy Jr.;Lee, Sang Chul
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.164-169
    • /
    • 2013
  • Alternatives to commercial chemical herbicide are currently being searched and tested due to the numerous adverse effects of commercially available herbicides to the environment. Barnyardgrass (Echinochloa crusgalli) is an important weed species around the world, especially in paddy rice fields. This study focuses on the favorable effects of mixing pyroligneous acids with commercial liquid herbicides. Seedlings were transplanted and grown under greenhouse conditions. The effect of treatment time or leaf-stage on herbicide-pyroligneous acid efficacies was checked, coupled with isolation and quantification of biochemical compounds. Results revealed that herbicide treatment at early post emergence (2~3 leaf stage) of Echnochloa crus-galli leads to effective control. Both liquid herbicides affected fatty acid, protein, and amino acid syntheses as reflected on their contents. The influence of wood vinegar (WV) or rice vinegar (RV) on these compounds was not thoroughly verified due to lack of information on the pyroligneous products. We observed that mixing WV or RV with BCB (bentazone + cyhalof-butyl) gives more favorable results than BUC (butachlor + clomazone), mixed with WV or RV. The result would indicate the potential of mixing pyroligneous acid in reducing herbicide application rate.

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 2. Characteristics of Runoff and Soil Erosion (제초제 처리 과수원 포장에서 강우 사상의 효과. 2. 유거와 토양침식의 변화)

  • Chung, Doug-Young;Park, Mi-Suk;Lee, Kyu-Seung;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • Changes in runoff and soil erosion at slightly hilly erosive plots with pear trees over a three-year period were monitored under two distinct types of weed treatment by herbides : (1) pre-emergence herbicide with glyphosate; (2) post-emergence herbicide with paraquat. The numbers of rainfall events from June to Nov for three years of experimental periods were approximately 50 times in the plots having 5.5%to 10.2%slope at an altitude of 125 m. The steady-state infiltration rate was generally increased in the bare plot from which all weeds were removed while it was decreased in the herbicide treated plots and control. The runoffs from the control plot during the experimental periods were always less than those from plots of the herbicide-treated and the bare. The runoff under the same rainfall intensity was decreased in the order of bare, glyphosate, paraquat, and control. This results indicated that the removal time of weed by the different types of herbicides might influenced the runoff rate. For the first two years of the experimental periods, loss of fine fraction was much greater than that of coarse fraction while soil loss was correlated neither with total rainfall nor amount of runoff. The soil erosion rate under the same rainfall intensity was increased in the order of control, glyphosate, paraquat, and bare plot. However, there were not much differences in the soil loss for all plots under a relatively lower rainfall intensity less than 30 mm $day^{-1}$, resulting in rainfall intensity was important factor on soil erosion.

Herbicidal Activity of Natural Product Chrysophanic Acid (천연 물질 Chrysophanic acid의 제초 활성)

  • Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Kim, Jae-Deog;Kim, Jin-Seog;Kim, Song-Mun;Chun, Jae-Chul;Choi, Jung-Sup
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.143-152
    • /
    • 2010
  • Herbicidal characterisitcs of natural product chrysophanic acid were investigated in a greenhouse condition. At early- and middle-stage post-emergence treatments, several grasses and broadleaf weeds appeared to be very susceptible to chrysophanic acid. However, any significant herbicidal activity treated by pre-emergence did not occur at concentration ranges from 31.3 to 1,000 ug $mL^{-1}$. Herbicidal activity of chrysophanic acid estimated by visual injury for large crabgrass was much higher when applied at 7 to 14 days after seeding than at 21 and 28 days after seeding. By post-emergence treatment, chrysophanic acid caused very considerable phytotoxicity on several grasses and broadleaf crops. In herbicidal interaction experiments determined by Colby's method, the effect of chrysophanic acid and caryophyllene oxide tank-mixture showed very high synergistic activity. Although chrysophanic acid did not give any pre-emergence effect, herbicidal spectrum tended to be very wide and strong when treated by post-emergence. These results suggest that chrysophanic acid possesses a possible potential to develop as a natural herbicide.

Selection of Appropriate Herbicides for Establishment of Weed Control System in Adzukibean and Mungbean (팥과 녹두 잡초방제체계(雜草防除體系) 수립(樹立)을 위한 제초제(除草劑) 병발(迸拔)에 관한 연구)

  • Hong, E.H.;Lee, Y.H.;Kim, S.D.;Hwang, Y.H.;Moon, Y.H.
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.199-207
    • /
    • 1983
  • To select appropriate herbicides for adzukibean and mungbean, a series of experiments was carried out in both field and pot from 1980 to 1983. Tolerance to the herbicides tested was highest in soybeans and followed by mungbean and adzukibean in the order. Pre-emergence herbicides showed relatively low phytotoxicity were chlorambem, linuron, and metribuzin for adzukibean and alachlor and butachlor for mungbean. Post-emergence herbicides showed no external phytotoxicity for adzukibean and mungbean were alloxydim, Dowco 453, fluazifop, etc.. For mungbean, terbutryn (1.5 kg, a.i./ha) which is pre-emergence herbicide showed the best weeding control efficacy but some possible phytotoxicity. Among post-emergence herbicides, acifluorfen (300 g, a.i./ha) showed the best weeding efficacy with no yield reduction though some phytotoxicity which recovered within 20 days. Compared to single herbicide application, the mixture or systemic treatments of herbicides showed much higher weeding control efficacy and seed yields: the systemic treatments of linuron (500 g, a.i./ha) / Dowco 453 (180 g, a.i./ha) or linuron (500 g, a.i./ha) / fluazufop (260 g, a.i./ha) for adzukibean and the mixture treatment of alachlor (1.31 kg, a.i./ha) / acifluorfen (150 g, a.i./ha) for mungbean, respectively.

  • PDF

Biological Characteristics and Control of Annual Bluegrass (Poa annua) (Annual Bluegrass의 생물학적 특성과 방제)

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • The object of this study is to review the current states of the characteristics and strategies to control annual bluegrass to apply information to the circumstance of South Korea. Annual bluegrass is one of the most widespread turfgrass species which has great ability to produce seedhead and shoot growth. It also has ability to tolerate low mowing height and to form uniformity of turfgrass when it is established. Annual bluegrass is well-known as weak turfgrass for high and low temperature. High rate of nitrogen and phosphorus improves growth of annual bluegrass. To control annual bluegrass, deep and infrequent irrigation is more effective than light and frequent irrigation. Clipping removal is more effective than clipping return to control annual bluegrass. Prodiamine, bensulide, and dithiopyr are applied as pre-emergence herbicide, and ethofumesate and bisbyribac-sodium are used as post-emergence herbicide. Paclobutrazol and flurprimidol are used as plant growth regulator. Trinexapac which is one of the most popular plant growth regulators (PGRs) in South Korea is not proper to control annual bluegrass because it accelerates improve growth of annual bluegrass in summer. Although chemical control is mainly used in South Korea, combination of cultural and chemical control may be the strategy to maximize effectiveness to control annual bluegrass.