• 제목/요약/키워드: Post-deformation annealing

검색결과 6건 처리시간 0.017초

Fabrication of FeCuNi alloy by mechanical alloying followed by consolidation using high-pressure torsion

  • Asghari-Rad, Peyman;Kim, Yongju;Nguyen, Nhung Thi-Cam;Kim, Hyoung Seop
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In this research, a new medium-entropy alloy with an equiatomic composition of FeCuNi was designed using a phase diagram (CALPHAD) technique. The FeCuNi MEA was produced from pure iron, copper, and nickel powders through mechanical alloying. The alloy powders were consolidated via a high-pressure torsion process to obtain a rigid bulk specimen. Subsequently, annealing treatment at different conditions was conducted on the four turn HPT-processed specimen. The microstructural analysis indicates that an ultrafine-grained microstructure is achieved after post-HPT annealing, and microstructural evolutions at various stages of processing were consistent with the thermodynamic calculations. The results indicate that the post-HPT-annealed microstructure consists of a dual-phase structure with two FCC phases: one rich in Cu and the other rich in Fe and Ni. The kernel average misorientation value decreases with the increase in the annealing time and temperature, indicating the recovery of HPT-induced dislocations.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구 (A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets)

  • 김수현;임창동;유봉선;서영명;정인상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

결정립크기와 집합조직제어를 통한 마그네슘 합금의 기계적 성질 개선 (Improvement of Mechanical Properties of Mg alloys through Control of Grain Size and Texture)

  • 김우진;이종범;김우영;정하국;박종덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.57-58
    • /
    • 2006
  • The effects of lowering ECAP temperature during ECAP process and Post-ECAP annealing on microstructure, texture and mechanical properties of the AZ31 alloys have been investigated in the present study. The as-extruded materials were ECAP processed to 2 passes at 553K prior to subsequent pressing up to 6 passes at 523K or 493K. When this method of lowering ECAP temperature during ECAP was used, the rods could be successfully deformed up to 6 passes without any surface cracking. Grain refinement during ECAP process at 553K might have helped the material to endure further straining at lower deformation temperatures probably by increasing the strain accommodation effect by grain boundary sliding, causing stress relaxation. Texture modification during ECAP has a great influence on the strength of Mg alloys because HCP metals have limited number of slip systems. As slip is most prone to take place on basal planes in Mg at room temperature, the rotation of high fraction of basal planes to the directions favorable for slip as in ECAP decreases the yield stress appreciably. The strength of AZ31 Mg alloys increases with decrease of grain size if the texture is constant though ECAP deformation history is different. A standard positive strength dependence on the grain size for Mg alloys with the similar texture (Fig. 1) supports that the softening of ECAPed Mg alloys (a negative slope) typically observed despite the significant grain refinement is due to the texture modification where the rotation of basal planes occurs towards the orientation for easier slip. It could be predicted that if the original fiber texture is restored after ECAP treatment yielding marked grain refinement, yield stress as high as 500 MPa will be obtained at the grain size of ${\sim}1{\mu}m$. Differential speed rolling (DSR) with a high speed ratio between the upper and lower rolls was applied to alter the microstructure and texture of the AZ31 sheets. Significant grain refinement took place during the rolling owing to introduction of large shear deformation. Grain size as small as $1.4{\mu}m$ could be obtained at 423K after DSR. There was a good correlation between the (0002) pole intensity and tensile elongation. This result indicates that tensile ductility improvement in the asymmetrically rolled AZ31 Mg alloys is closely related to the weakening of basal texture during DSR. Further basal texture weakening occurred during annealing after DSR. According to Hall-Petch relation shown in Fig. 1, the strength of the asymmetrically rolled AZ31 is lower than that of the symmetrically rolled one when compared at the same grain size. This result was attributed to weakening of fiber texture during DSR. The DSRed AZ31, however, shows higher strength than the ECAPed AZ31 where texture has been completely replaced by a new texture associated with high Schmid factors.

  • PDF

에탄올 훈증처리한 3D 프린팅 PVB 출력물의 기계적 특성 (Mechanical Properties of PVB 3D Printed Output Fumigated with Ethanol)

  • 강은영;임지호;최승곤;문종욱;이유경;이선곤;정대용
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.369-375
    • /
    • 2020
  • FDM 3D printing structures have rough surfaces and require post-treatment to improve the properties. Fumigation is a representative technique for removing surface unevenness. Surface treatment by fumigation proceeds by dissolving the surface of the protruding structure using a vaporized solvent. In this study, 3D printed PVB outputs are surface-treated with ethyl-alcohol fumigation. As the fumigation time increases, the surface flattens as ethanol dissolves the mountains on the surface of PVB and the surface valleys are filled with dissolved PVB. Through the fumigation process, the mechanical strength tends to decrease, and deformation rate increases. Ethanol vapor permeates into PVB, widening the distance between chains and resulting in weak bonding strength between chains. In order to confirm the effect of fumigation only, an annealing process is performed at 80 ℃ for 1, 5, 10, 30, and 50 minutes and the results of the fumigation are compared.

동시 스퍼터링법에 의한$Pb(Fe^{0.5},Nb^{0.5}O_3$박막의 제조 및 특성 평가에 대한 연구 (A study on the fabrication of $Pb(Fe^{0.5},Nb^{0.5}O_3$ thin films by a Co-sputtering technique and their characteristics properties)

  • 이상욱;신동석;최인훈
    • 한국진공학회지
    • /
    • 제7권1호
    • /
    • pp.17-23
    • /
    • 1998
  • RF magnetron co-sputtering법으로 PFN[$Pb(Fe_{0.5}Nb_{0.5}O_3(PFN)$]박막을 제조한 후 급속 열처리(rapid thermal annealing, RTA)하여 XRD(s-ray diffractometer)를 통한 박막의 상변 태 및 전기적 특성에 대하여 연구하였다. $SiO_2$/Si, ITO/glass, 및 Pt/Ti/$SiO_2$/Si기판에 PFN 박막을 증착시켰다. 기판의 변화에 따른 증착된 PFN박막의 조성변화는 관찰할 수 없었다. ITO/glass기판을 사용한 경우와 $SiO_2$/Si기판을 사용하여 증착시킨 PFN박막의 결정구조를 분석한 결과 ITO/glass기판에 증착한 시편이 perovskite상으로의 결정화가 더욱 우세하였다. 이는$SiO_2$기판의 경우 Pb의 확산에 의해 결정화가 잘 되지 못하기 때문이다. Pt/Ti/$SiO_2$/Si 기판 위에 증착시킨 PFN박막의 경우 perovskite상과 pyrochlore상이 공존하였다. Perovskite 상으로의 상변태에 대한 중요한 변수로는 열처리 온도와 Pb의 함량인 것이 확인되었으며, Pb의 함량이 화학양론적 조성비에 비해 5-10%정도 과량일수록 perovskite상으로의 상변태 온도가 낮아지고 상전이 정도가 향상되는 것으로 나타났으며, 급속 열처리 후 XRD를 이용 한 결정성 분석결과를 통해 결정한 perovskite상으로의 상전이 최저온도는 $500^{\circ}C$였다. Pb/(Fe+Nb)의 조성비가 1.17인 경우의 박막을 질소 분위기 하에서 $600^{\circ}C$로 30초간 급속열 처리 하였을 때 낮은 누설 전류 값과 1kHz에서 88의 유전 상수 값, 2.0$\mu$C/$\textrm{cm}^2$의 잔류 분극 값과 144kV/cm의 항전계 값을 얻었다.

  • PDF