• Title/Summary/Keyword: Post-curing time

Search Result 31, Processing Time 0.028 seconds

COMPENSATION EFFECT OF EXPOSURE TIME INCREASE TO DECREASED LIGHT INTENSITY OF VISIBLE-LIGHT CURING UNIT (가시광선 중합기의 조사강도 감소에 대한 조사시간 증가의 보상효과)

  • Yoon, Tae-Won;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.325-336
    • /
    • 1997
  • The purpose of this study was to evaluate the compensation effect of exposure duration increase to decreased light intensity of visible-light curing unit. The specimen with 2mm thickness was made of Restorative $Z-100^{TM}$ (A2 shade, 3M Dental Products, U.S.A.) and cured with $Optilux^{TM}$ (Demetron Research Co. U.S.A.). The light intensity was controlled to 420 $mW/cm^2$, 540 $mW/cm^2$, 630 $mW/cm^2$ and curing time, also, controlled to 40, 60, 80 seconds. Cured specimen was stored in a light-proof container for 24 hours to post-irradation was completed. Microhardness of top and bottom surface of specimen were measured to evaluate the depth of cure. The obtained results were as follows: 1. The microhardness of top and bottom surface of the composite resin specimen was increased significantly as light intensity and exposure time was increased (P<0.01). 2. Light intensity was more correlated with bottom microhardness(${\gamma}{\geq}$0.438) than top microhardness(${\gamma}{\geq}$0.213), and exposure time was more correlated with top microhardness (${\gamma}{\geq}$0.424) than bottom microhardness(${\gamma}{\geq}$0.335). 3. The regressive equation was obtained in this study as follows : $H=0.07{\times}D+0.012{\times}I+76$ (H : Microhardness(KHN), D : Exposure time, I : Light intensity)

  • PDF

Microhardness of resin cements after light activation through various translucencies of monolithic zirconia

  • Pechteewang, Sawanya;Salimee, Prarom
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.246-257
    • /
    • 2021
  • PURPOSE. This study aimed to investigate the Vickers Hardness Number (VHN) of light- and dual cured resin cements cured through monolithic zirconia specimens (VITA YZ) of various translucencies: translucent (T); high translucent (HT); super translucent (ST); and extra translucent (XT) at 0, 24, and 48 h after curing. MATERIALS AND METHODS. Four zirconia specimens from each translucency were prepared. Two light-cured resin cements (Variolink N LC; VL and RelyX Veneer; RL) and two dual-cured resin cements (Variolink N DC; VD and RelyX U200; RD) were used. The cement was mixed and loaded in a mold and cured for 20 s through the zirconia specimen. The upper surface of cements was tested for VHN using a microhardness tester at 0, 24, and 48 h after curing. The VHN were analyzed using two-way repeated, Brown-Forsythe ANOVA with Games Howell post-hoc analysis and independent t-tests (P < .05). RESULTS. All cements showed significantly higher VHN from 0 h to 24 h (P < .001). At 48 h, the VHN of light-cured cements were significantly lower when cured under the T groups than under XT groups (P = .001 in VL, P = .014 in RL). At each post curing time of each translucency, VD showed higher VHN than VL (P < .05), and RD also showed higher VHN than RL (P < .05). CONCLUSION. The translucency of zirconia has an effect on the VHN for light-cured resin cements, but has no effect on dual-cured resin cements. Dual-cured resin cement exhibited higher VHN than the light-cured resin cement from the same manufacturer. All resin cements showed significantly higher VHN from 0 h to 24 h.

Feasibility study on developing productivity and quality improved three dimensional printing process

  • Lee, Won-Hee;Kim, Dong-Soo;Lee, Taik-Min;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2160-2163
    • /
    • 2005
  • Solid freeform fabrication (SFF) technology plays a major role in industry and represents a reasonable percentage of industrial rapid prototyping/tooling/manufacturing (RP/RT/RM) development applications. However, SFF technology still has long way to progress to achieve satisfactory process speed, surface finish and overall quality improvement of its application. Today, three dimensional printing (3DP) technique that is one of SFF technology is receiving many interests, and is applied by various fields. It can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. However, need long curing time after manufacture completion. And it must do post-processing process necessarily to heighten strength of objects because strength of fabricated objects is very weak. Therefore, in this study, we proposed an improved 3DP process that can solve problems of conventional 3DP process. The general 3DP process is method to spout binder simply through printer head on powder, but proposed process is method to cure jetted UV resin by UV lamp after jet UV resin using printhead on powder. The hardening of resin is achieved strongly at early time by UV lamp in proposed method. So, the proposed process can fabricate three dimensional objects with high speed without any post-processing.

  • PDF

Post-cure Condition of a Silicone Rubber Material for a LCD Lamp Holder (LCD 램프홀더용 실리콘고무재료의 후가교 조건)

  • Ahn, Won-Sool;Lee, Joon-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1661-1667
    • /
    • 2009
  • Post-cure characteristics of a silicone rubber material which is widely used for a LCD lamp holder were investigated using thermogravimetric analysis (TGA). Research was especially focussed on searching for the optimum post-cure conditions in relation to the practical operation environments. The results showed that incipient volatile temperature(Ti) during the process was considered as the most important factor and, thereby, post-curing for 2hrs at $250^{\circ}C$seemed to be a reasonable condition in the practical view-point. Arrhenius plot of shift factors which were empirically determined from the time-temperature-superposition-principle showed good linearity, exhibiting the post-cure mechanism might be proceeded through single mechanism with activation energy of 108.25kJ/mol.

Effect of Modification of SeO2/Acrylamide Ratios on Diffraction Efficiencies in PVA/AA Photopolymer Films

  • Kim, Dae-Heum;Lim, Ji-Yun;Nam, Seung-Woong;Chung, Dae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.183-191
    • /
    • 2007
  • The highest diffraction efficiency(DE) value after illumination and post-curing of photopolymer films were obtained at the $SeO_2$/Acrylamide(AA) Ratios of AA 3.0 g, $SeO_2$ 1.0g and the DE's were stable values of over 90%. By the addition of $SeO_2$, the maximum DE at the initial stage of illumination was reached at 300 seconds, which suggests $SeO_2$ slows down the photopolymerization of AA, which enhances the maximum DE value by giving more migration time. DE variation curve for the optimum composition during extended-time illumination of 9,000 seconds resembles a sine curve due to the combination of the monomer diffusion and the photopolymerization, and the photopolymer film expanded by about 8% after photopolymerization due to monomer migration.

Evaluation of Mechanical Properties of Carbon Fabrics Composite with Thermal Shock (열 충격에 따른 탄소 직물 복합재료의 역학적 특성 평가)

  • Kim, Jae-Hong;Lee, Jung-Ho;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, mechanical properties of carbon fabrics composite under the thermal shock cycling were evaluated. Due to the interactions between fiber and polymer matrix, it is reasonable to conclude that both thermal cycles of thermal shock result in improvement of interlaminar shear strength(ILSS) for the longer conditioning time duration. The rise in ILSS may be attributed to the improved adhesion by cryogenic compressive stress and also by the post-curing strengthening effect. However, the flexural and tensile strength were decreased with increasing conditioning time of thermal cycle.

  • PDF

Reinforcement of Polychloroprene by means of Silia and Glass Fiber (Silica와 Glass Fiber에 의한 Polychloroprene의 보강(補强))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 1988
  • The effect of triazine thiol derivative on the physical properties of silica-polychloroprene(CR) composites and glass fiber(MGF)-CR composites was investigated. Optimum cure time of the MGF composites filled with 2-dibuthylamino-4, 6-dithiol-s-triazine(DBT) was the fastest one, while maximum torque was the best in case of the silica composites filled with s-triazine-2,4,6-trithiol(TAT) on the Oscillating Disk Rheometer(ODR) test. Stress-strain curves of the composites showed that the physical properties such as 100% modulus, 300% modulus, tensile strength of the silica composites filled with DBT was very satisfactory and the silica composites filled with TAT was higher density of crosslinking than other crosslinked elastomer. In aging properties, elastomer filled DBT and TAT were progress post-curing reaction with increasing of aging time and it have been improved the tensile strength and crosslinking density.

  • PDF

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

A Study on Reverse Osmosis Composite Membrane with Polysulfone Supporting Membrane (역삼투 복합막 제조(I) 폴리설폰지지체 계면중합 역삼투용 복합막 제조)

  • 김명만;박종원;민병렬
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.38-45
    • /
    • 1994
  • The experiment was conducted to evaluate the effects of variables in preparing TFC membrane by interfacial polymerization. Obtained results are as follow: As the concentration of MPD increses, the rejection rate incresed, the total volume flux was decresed. As the dipping time in MPD solution increases, the rejection rate increased, the total volume flux was increased until reach optimum point. As the dipping time in TMC solution increses, the total volume flux increased, the rejection rate was increased until reach optimum point. As the curing temperature increases, the total volume flux increased was an optimum point in the rejection rate. Since the quantity of generating hydrochloric acid was small, the required quantity of NaOH for neutriliztion was small. The post-treatment with ethanol, isopropanol and water in the temprerature ranging of $5~7^{\circ}C$ brought an increment of the rejection and the total volume flux, For water temperature ranging of $5~7^{\circ}C$was the optimum temperature in the post treatment.

  • PDF