• Title/Summary/Keyword: Post translational modification

Search Result 115, Processing Time 0.017 seconds

The Role of Ubiquitin-conjugating Enzymes as Therapeutic Targets in Cancer (암 치료 표적으로써 유비퀴틴 접합 효소 UBE2의 기능)

  • Seon Min Woo;Taeg Kyu Kwon
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.523-529
    • /
    • 2023
  • Ubiquitination is a post-translational modification that is involved in the quality control of proteins and responsible for modulating a variety of cellular physiological processes. Protein ubiquitination and deubiquitination are reversible processes that regulate the stability of target substrates. The ubiquitin proteasome system (UPS) helps regulate tumor-promoting processes, such as DNA repair, cell cycle, apoptosis, metastasis, and angiogenesis. The UPS comprises a combination of ubiquitin, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin-ligase enzymes (E3), which complete the degradation of target proteins. Ubiquitin-conjugating enzymes (UBE2s) play an inter-mediate role in the UPS process by moving activated ubiquitin to target proteins through E3 ligases. UBE2s consist of 40 members and are classified according to conserved catalytic ubiquitin-conjugating (UBC) domain-flanking extensions in humans. Since UBE2s have specificity to substrates like E3 ligase, the significance of UBE2 has been accentuated in tumorigenesis. The dysregulation of multiple E2 enzymes and their critical roles in modulating oncogenic signaling pathways have been reported in several types of cancer. The elevation of UBE2 expression is correlated with a worse prognosis in cancer patients. In this review, we summarize the basic functions and regulatory mechanisms of UBE2s and suggest the possibility of their use as therapeutic targets for cancer.

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

Discovery of UBE2I as a Novel Binding Protein of a Premature Ovarian Failure-Related Protein, FOXL2 (조기 난소 부전증 유발 관련 단백질인 FOXL2의 새로운 결합 단백질 UBE2I의 발견)

  • Park, Mira;Jung, Hyun Sook;Kim, Hyun-Lee;Pisarska, Margareta D.;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.289-296
    • /
    • 2008
  • BPES (Blepharophimosis/Ptosis/Epicanthus inversus Syndrome) is an autosomal dominant disorder caused by mutations in FOXL2. Affected individuals have premature ovarian failure (POF) in addition to small palpebral fissures, drooping eyelids, and broad nasal bridge. FOXL2 is a member of the forkhead family transcription factors. In FOXL2-deficient ovaries, granulosa cell differentiation dose not progress, leading to arrest of folliculogenesis and oocytes atresia. Using yeast two-hybrid screening of rat ovarian cDNA library with FOXL2 as bait, we found that small ubiquitin-related modifier (SUMO)-conjugating E2 enzyme UBE2I protein interacted with FOXL2 protein. UBE2I also known as UBC9 is an essential protein for processing SUMO modification. Sumoylation is a form of post-translational modification involved in diverse signaling pathways including the regulation of transcriptional activities of many transcriptional factors. In the present study, we confirmed the protein-protein interaction between FOXL2 and UBE2I in human cells, 293T, by in vivo immunoprecipitation. In addition, we generated truncated FOXL2 mutants and identified the region of FOXL2 required for its association with UBE2I using yeast-two hybrid system. Therefore, the identification of UBE2I as an interacting protein of FOXL2 further suggests a presence of novel regulatory mechanism of FOXL2 by sumoylation.

  • PDF

The anti-tumor mechanisms of p53 through the regulation of expression and glycosylation of insulin-like growth factor binding protein-3 (암억제 유전자 p53에 의한 insulin-like growth factor binding protein-3의 발현과 glycosylation를 통한 항암작용)

  • Kim, Sun Young;Kim, Se Rim;Lee, Jung Chang;Yi, Ho Keun;Lee, Dae Yeol;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.431-438
    • /
    • 2006
  • Purpose : Insulin-like growth factor binding protein(IGFBP)-3 has been known as a tumor suppressor gene, and its anti-tumor function was divided into insulin-like growth factor(IGF)-dependent and IGF-independent mechanism. In IGF-independent mechanism, IGFBP-3 directly interacts with a cell without binding of IGFs, becoming an interesting object in oncology. Several studies demonstrate that one of the well-known tumor suppressor genes, p53, induces directly IGFBP-3 transcription, and the increment of IGFBP-3 expression induces apoptosis of many cancer cells. Recently, the anti-tumor mechanisms of IGFBP-3 have been reported, but post-translational modification of IGFBP-3 and its anti-tumor mechanism are not well known. In this study, we examined whether p53 regulated the glycosylation of IGFBP-3, and analysed the meaning of IGFBP-3 glycosylation related to the apoptosis of cancer cell. Methods : The p53-mutated status of MDA-MB-231 human breast cancer cells was used in this experiment. The expression and glycosylation of IGFBP-3 were tested by Western blot analysis after infection of adenovirus mediated Ad/p53 and/or Ad/IGFBP-3. Results : Ad/p53 infected cells resulted in growth retardation and the induced apoptosis. p53 induced direct expression and glycosylation of IGFBP-3. The increase of glcosylated IGFBP-3 was able to promote cellular apoptosis, and the glycosylation of IGFBP-3 was more activated by the double treatment of Ad/p53 and Ad/IGFBP-3. Conclusion : From this study, the anti-tumor activity of IGFBP-3 was shown to improve the stabilization of IGFBP-3 through the increment of glycosylation of IGFBP-3 by p53. This result suggests that the combined gene therapy of p53 and IGFBP-3 may appropriate treatment of cancer.

Functional implications of gene expression analysis from rice tonoplast intrinsic proteins during seed germination and development (벼 종자에서 액포막 aquaporin (tonoplast intrinsic protein) 유전자의 발현과 기능)

  • Huh, Sun-Mi;Lee, In-Sook;Kim, Beom-Gi;Shin, Young-Seop;Lee, Gang-Seop;Kim, Dool-Yi;Byun, Myung-Ok;Kim, Dong-Hern;Yoon, In-Sun
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.517-528
    • /
    • 2010
  • Rice seed maturation and germination involve drastic changes in water and nutrient transport, in which tonoplast aquaporins may play an important role. In the present study, gene expression profiles of 10 tonoplast intrinsic proteins (TIP) from rice were investigated by RT-PCR during seed development and germination. OsTIP3;1 and OsTIP3;2 were specifically expressed in mature seeds. Their transcript level rapidly decreased after onset of seed germination and gene expression was induced by ABA treatment. In contrast, expression of OsTIP2;1 and OsTIP4;3 was not seed specific as transcripts were found in vegetative tissues as well. Their respective transcript levels decreased at an early stage of seed development, whereas they increased at a later stage of seed germination and elongation of embryonic roots and shoots. When seed germination was inhibited by various stress conditions and ABA, expression of OsTIP2;1 and OsTIP4;3 was completely suppressed. In contrast, the expression level of OsTIP2;2 rapidly increased after seed imbibition and the transcript level was maintained under conditions inhibiting seed germination. These results implicate that tissue specific and developmental transcriptional regulation of OsTIPs in rice seeds depends on their specific function. In addition, OsTIPs can be discriminated by different potential phosphorylation and methylation sites in their protein structures. OsTIP3;1 and OsTIP3;2 possess unique phosphorylation signatures at their N-terminal domain, loop B and loop E, respectively. OsTIP2;1 and OsTIP4;3 have a potential methylation site at their Nterminal domain. This suggests that activity of specific tonoplast aquaporins may be regulated by post-translational modification as well as by transcriptional control.