• 제목/요약/키워드: Post electrode

검색결과 149건 처리시간 0.024초

Reset-first Resistance Switching Mechanism of HfO2 Films Based on Redox Reaction with Oxygen Drift-Diffusion

  • Kim, Jong-Gi;Lee, Sung-Hoon;Lee, Kyu-Min;Na, Hee-Do;Kim, Young-Jae;Ko, Dae-Hong;Sohn, Hyun-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.286-287
    • /
    • 2012
  • Reset-first resistive switching mechanism based on reduction reaction in HfO2-x with oxygen drift-diffusion was studied. we first report that the indirect evidence of local filamentary conductive path formation in bulk HfO2 film with local TiOx region at Ti top electrode formed during forming process and presence of anion-migration at interface between electrode and HfO2 during resistive switching through high resolution transmission electron microscopy (HRTEM), electron disperse x-ray (EDX), and electron energy loss spectroscopy (EELS) mapping. Based on forming process mechanism, we expected that redox reaction from Ti/HfO2 to TiOx/HfO2-x was responsible for an increase of initial current with increasing the post-annealing process. First-reset resistive switching in above $350^{\circ}C$ annealed Ti/HfO2 film was exhibited and the redox phenomenon from Ti/HfO2 to TiOx/HfO2-x was observed with high angle annular dark field (HAADF) - scanning transmission electron microscopy (STEM), EDX and x-ray photoelectron spectroscopy. Therefore, we demonstrated that the migration of oxygen ions at interface region under external electrical bias contributed to bipolar resistive switching behavior.

  • PDF

DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용 (Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge)

  • 최유리;김동주;김교선
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

금속산화물 첨가방법에 의한 리튬이차전지 부극재료의 충방전 특성 개선 (Enhancement on the Charge-discharge Property of Carbon Anode by the Addition of Metal Oxides in Li-ion Secondary Batteries)

  • 김정식
    • 한국세라믹학회지
    • /
    • 제40권11호
    • /
    • pp.1085-1089
    • /
    • 2003
  • 본 연구에서는 리튬이차전지의 음극재료로서 사용되고 있는 Mesocarbon Microbeads (MCMB) 카본 분말에 제2상 첨가물로서 소량의 주석산화물 (SnO$_2$) 을 균일하게 분산 첨가시킴으로써 카본전극 표면을 개질시켰으며, 이에 따른 전극의 전기화학적 특성 변화에 관하여 고찰하였다. 주석산화물 첨가 방법는 전하적정법을 사용하여 Sn 을 MCMB 분말에 삽입시키고, 다시 삽입된 Sn이 산화되도록 대기 중에서 25$0^{\circ}C$로 l 시간동안 후열처리를 하였다. 주석산화물이 첨가된 MCMB 카본분말로 Li/MCMB 전지 cell을 만들어 충방전시험을 수행한 결과, raw MCMB로 만든 전극보다 더 우수한 충방전 용량과 싸이클 특성을 나타내었다. 즉, 주석산화물 삽입에 의해 표면개질된 MCMB 카본 분말은 기존의 MCMB에 비해 높은 초기 방전용량과 충전용량을 나타내었고, 또한 높은 가역특성과 좋은 cycleability를 보였다. 삽입된 SnO$_2$의 양이 증가할수록 높은 가역용량을 나타내었고 비가역용량 역시 높은 값을 나타내었다.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Impact of Energy and Access Methods on Extrahepatic Tumor Spreading and the Ablation Zone: An Ex vivo Experiment Using a Subcapsular Tumor Model

  • Jin Sil Kim;Youngsun Ko;Hyeyoung Kwon;Minjeong Kim;Jeong Kyong Lee
    • Korean Journal of Radiology
    • /
    • 제20권4호
    • /
    • pp.580-588
    • /
    • 2019
  • Objective: To evaluate the impact of energy and access methods on extrahepatic tumor spreading and the ablation zone in an ex vivo subcapsular tumor mimic model with a risk of extrahepatic tumor spreading. Materials and Methods: Forty-two tumor-mimics were created in bovine liver blocks by injecting a mixture of iodine contrast material just below the liver capsule. Radiofrequency (RF) ablations were performed using an electrode placed parallel or perpendicular to hepatic surface through the tumor mimic with low- and high-power protocols (groups 1 and 2, respectively). Computed tomography (CT) scans were performed before and after ablation. The presence of contrast leak on the hepatic surface on CT, size of ablation zone, and timing of the first roll-off and popping sound were compared between the groups. Results: With parallel access, one contrast leak in group 1 (1/10, 10%) and nine in group 2 (9/10, 90%) (p < 0.001) were identified on post-ablation CT. With perpendicular access, six contrast leaks were identified in each group (6/11, 54.5%). The first roll-off and popping sound were significantly delayed in group 1 irrespective of the access method (p = 0.002). No statistical difference in the size of the ablation zone of the liver specimen was observed between the two groups (p = 0.247). Conclusion: Low-power RF ablation with parallel access is proposed to be effective and safe from extrahepatic tumor spreading in RF ablation of a solid hepatic tumor in the subcapsular location. Perpendicular placement of an electrode to the capsule is associated with a risk of extrahepatic tumor spreading regardless of the power applied.

리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구 (A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor)

  • 강승현;이홍섭
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.41-45
    • /
    • 2021
  • 본 연구에서는 멤리스터 소자의 높은 신뢰성을 확보하기 위해 소자 제작 단계에서 30 nm 두께의 ZrO2 금속산화물 박막 위 국부영역에 리튬 filament seed 층을 패턴하여 작은 이온반경의 리튬이온을 저항변화 주체로 활용하는 멤리스터 소자를 구현하였다. 패턴 된 리튬 filament seed 대비 다양한 상부전극의 면적을 적용하여 멤리스터-커패시턴스 병렬 구조의 이온형 저항변화 소자에서 커패시턴스가 filament type 저항변화 특성에 미치는 영향을 조사하고자 하였다. 이를 위해 ZrO2 박막 위에 5 nm 두께, 5 ㎛ × 5 ㎛ 면적의 리튬 filament seed 증착 후 50 ㎛, 100 ㎛ 직경의 상부전극을 증착, 리튬 메탈의 확산을 위한 250℃ 열처리 전 후 샘플에서 저항변화 특성을 확인하였다. 열확산에 의해 형성된 전도성 filament의 경우 전압에 의한 제어가 불가함을 확인하였으며, 전압에 의해 형성된 filament만이 electrochemical migration에 의한 가역적 저항변화 특성 구현이 가능한 것을 확인하였다. 전압에 의한 filament 형성 시 병렬로 존재하는 커패시턴스의 크기가 filament의 형성 및 소실에 중요한 인자임을 확인하였다.

뒤통수밑근 이완기법과 병행된 고주파 심부투열이 만성 긴장성 두통 환자들의 압통과 목 가동성 및 기능장애에 미치는 영향 (Effects of High-frequency Diathermy Integrated into Suboccipital Release on Tenderness and Neck Mobility and Disability in People with Chronic Tension-type Headache)

  • 이형렬;심재훈;오덕원
    • 한국전문물리치료학회지
    • /
    • 제24권2호
    • /
    • pp.37-47
    • /
    • 2017
  • Background: Active trigger points (TrPs) of the suboccipital muscles greatly contribute to the occurrence of chronic tension-type headache, with increased sensitivity of TrPs and facilitated referred pain. Objects: This study aimed to investigate whether the integration of high-frequency diathermy into suboccipital release is more beneficial than the use of suboccipital release alone. Methods: Thirty subjects were assigned to either experimental group-1 (EG-1) to undergo suboccipital release combined with high-frequency diathermy (frequency: 0.3 MHz, and electrode type: resistive electronic transfer), or EG-2 to undergo suboccipital release alone, or the control group (CG) with no intervention, with 10 subjects in each group. The assessment tools included the headache impact test 6 (HIT-6), perceived level of tenderness, neck disability index, and neck mobility. Intervention was performed for 10 minutes, twice per week, for 4 weeks, and measurements were performed before and after the interventions. Results: The between-group comparison of the post-test values and changes between pretest and post-test showed significant differences for all parameters at p<.05, except for the left-to-right lateral bending range. In the post hoc test, EG-1 showed significant differences for the parameters in comparison with the CG, while no significant differences in the perceived tenderness level, on both temporal regions, were found between EG-2 and CG. Furthermore, the HIT-6 score and perceived tenderness level, in the right temporal region, showed significant differences between EG-1 and EG-2. In the within-group comparison, EG-1 and EG-2 appeared to be significantly different between pretest and post-test (p<.05), except for the perceived tenderness level in the right temporal region, with significance for the EG-1 group only (p<.05). Conclusion: These findings suggest that the suboccipital release technique may be advantageous to improve headache, tenderness, and neck function and mobility, with more favorable effects with the incorporation of high-frequency diathermy.

TiO2 Buffer Layer의 후열처리 온도 증가에 따른 PLZT 박막의 유전특성에 대한 연구 (The Dielectric Properties of PLZT Thin Films as Post Annealing Temperatures of TiO2 Buffer Layer)

  • 윤지언;이인석;김상지;손영국
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.560-565
    • /
    • 2008
  • 본 연구에서는 PLZT 박막이 $(Pb_{0.92}La_{0.08})(Zr_{0.65}Ti_{0.35})O_3$ 조성의 타겟을 이용한 R.F. 마그네트론 스퍼터링공정에 의해 실리콘 웨이퍼 위에 증착되었다. PLZT 박막의 강유전특성을 향상시키기 위해 buffer layer인 $TiO_2$ 층이 사용되었으며, buffer layer의 후열처리온도 변화에 따른 PLZT 박막의 결정성과 유전특성이 연구되었다. buffer layer이 삽입되지 않은 PLZT 박막의 잔류분극값은 $19.13{\mu}C/cm^2$ 이었으며, 반면 $TiO_2$ buffer layer을 삽인한 후 후열처리 온도를 $600^{\circ}C$로 증가시킨 PLZT 박막의 잔류분극값은 $146.62{\mu}C/cm^2$까지 크게 증가하였다. 하부전극 백금(Pt)과 PLZT 박막층 사이에 삽입된 $TiO_2$ buffer layer의 특성과 PLZT 박막의 유전특성에 미치는 영향을 살펴보기 위해 글로우 방전 분광법 (glow discharge spectroscopy, GDS)이 PLZT 박막(PLZT/($TiO_2$)/Pt/Ti/$SiO_2$/Si wafer)에 대해 수행 되었다.

황동과 금형강의 와이어 컷 방전가공을 통한 가공특성 평가 (Evaluation of Machining Characteristics through Wire-Cut EDM of Brass and SKD 11)

  • 김정석
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.130-137
    • /
    • 1997
  • The demand for wire-cut EDM is increasing rapidly in the die and tool making industry. In this study machining characteristics such as machining rate, surface roughness, hand drum form and hardness of machined material are investigated experimentally under the conditions varing pulse on time, pulse off time, peak voltage, wire tension after fixing other conditions in SKD 11 and brass and brass workpiece. It was found that various operating conditions had significant influences on machining characteristics. But the hardness of workpiece was uneffected by operating conditions. Also it was obtained experimentally that brass workpeice had better machinability than SKD 11 one.dition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF

Post Ru CMP Cleaning for Alumina Particle Removal

  • Prasad, Y. Nagendra;Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • The demand for Ru has been increasing in the electronic, chemical and semiconductor industry. Chemical mechanical planarization (CMP) is one of the fabrication processes for electrode formation and barrier layer removal. The abrasive particles can be easily contaminated on the top surface during the CMP process. This can induce adverse effects on subsequent patterning and film deposition processes. In this study, a post Ru CMP cleaning solution was formulated by using sodium periodate as an etchant and citric acid to modify the zeta potential of alumina particles and Ru surfaces. Ru film (150 nm thickness) was deposited on tetraethylorthosilicate (TEOS) films by the atomic layer deposition method. Ru wafers were cut into $2.0{\times}2.0$ cm pieces for the surface analysis and used for estimating PRE. A laser zeta potential analyzer (LEZA-600, Otsuka Electronics Co., Japan) was used to obtain the zeta potentials of alumina particles and the Ru surface. A contact angle analyzer (Phoenix 300, SEO, Korea) was used to measure the contact angle of the Ru surface. The adhesion force between an alumina particle and Ru wafer surface was measured by an atomic force microscope (AFM, XE-100, Park Systems, Korea). In a solution with citric acid, the zeta potential of the alumina surface was changed to a negative value due to the adsorption of negative citrate ions. However, the hydrous Ru oxide, which has positive surface charge, could be formed on Ru surface in citric acid solution at pH 6 and 8. At pH 6 and 8, relatively low particle removal efficiency was observed in citric acid solution due to the attractive force between the Ru surface and particles. At pH 10, the lowest adhesion force and highest cleaning efficiency were measured due to the repulsive force between the contaminated alumina particle and the Ru surface. The highest PRE was achieved in citric acid solution with NaIO4 below 0.01 M at pH 10.

  • PDF