• 제목/요약/키워드: Post Welding Heat Treatment

Search Result 107, Processing Time 0.023 seconds

Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution (해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술)

  • Lee, Ho-Jin;Lee, Bong-Sang;Park, Kwang-Soo;Byeon, Jin-Gwi;Jung, In-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

Effect of Electrical Resistance Welding on Microstructure and Mechanical Properties of API X70 Linepipe Steel (ERW 용접 전후 API X70 라인파이프강의 미세조직과 기계적 특성 변화)

  • Oh, Dong-Kyu;Choi, Ye-Won;Shin, Seung-Hyeok;Jeong, Han-Gil;Kwack, Jin-Sub;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • Variations in the microstructure and mechanical properties of API X70 steel processed by piping, electrical resistance welding (ERW), and post seam annealing (PSA) are investigated in this study. In the welding zone, some elongated pearlites are formed and grains coarsening occurs due to extra heat caused by the ERW and PSA processes. After the piping, the base metal shows continuous yielding behavior and a decrease in yield and impact strengths because mobile dislocation and back stress are introduced during the piping process. On the other hand, the ERW and PSA processes additionally decreased the impact strength of welding zone at room and low temperatures because some elongated pearlites easily act as crack initiation site and coarse ferrite grains facilitate crack propagation. As a result, the fracture surface of the welding zone specimen tested at low temperature revealed mostly cleavage fracture unlike the base metal specimen.

The Effects of Geometrical Shape and Post Weld Treatment on Welding Residual Stress Distribution of Weldment in Multi-pass Welded Pipe (다층용접배관의 용접부 잔류음력분포에 대한 기하학적형상과 용접후처리의 영향)

  • 김철한;조선영;김복기;배동호
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the residual stress fields of multi-pass welded were analyzed by FEA under various geometrical conditions. In order to estimate the effects of pipe geometries on residual stress distribution, welding processes of each model were performed under the same heat cycles. And then, the influence of cutting off the weld bead on the residual stress redistribution was also estimated. From the results, in the range of t/D=0.05, axial residual stresses on the outer surface of the welded pipe were linearly decreased with pipe diameter increase. On the other hand, hoop residual stresses were not influenced by them. And both axial and hoop residual stresses on the outer surface of the welded pipe were increased with pipe diameter increase. But, when t/D was smaller than 0.05, they were converged in the nearly same value. The maximum residual stresses were generated at around HAZ. It in therefore necessary to consider them in welding design, strength evaluation, and analysis of fracture characteristics.

  • PDF

Effect of Heat Treatment on the Microstructures and Properties of HVOF Sprayed Ni-Cr-W-Mo-B Alloy Coatings (초고속화염용사법으로 제조된 Ni-Cr-W-Mo-B 합금 코팅의 미세조직과 특성에 미치는 열처리 효과)

  • 민경오;이창희
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.48-54
    • /
    • 2000
  • The corrosion properties of Ni-Cr-W-Mo-B alloy sprayed by the high velocity oxy-fuel spraying (HVOF) was studied as a function of heat treatment by using both potentiodynamic polarization and immersion tests in the H₂SO₄ solution. The mechanical property was also evaluated by a microhardness tester. Microstructural characteristics of te as-sprayed and annealed coatings at 550, 750 and 950℃ have been analyzed by means of OM, XRD, SEM and TEM. The results showed that the corrosion resistance was improved by increasing the annealing temperature. As-sprayed coating had metastable and heterogeneous phases such as amorphous, nanocrystalline and very refined grain and precipitates, which induced a localized corrosion. The localized corrosion occurred preferentially at the unmelted particles which were composed of Ni matrix and Cr, W and Mo riched phase segregated in the boundaries. As annealing temperature was increased, the microstructure had shown some changes - reduction of porosity and s[plat boundary decomposition and crystallization of amorphous/nanocrystalline phases, grain coarsening,, formation and growth of precipitates such as {TEX}$M_{23}C_{6}${/TEX} and {TEX}$M_{7}C_{3}${/TEX}. In addition, the compositional difference between matrix and boundary phases gradually disappeared, which changed the corrosion type from localized corrosion to general corrosion and thus enhanced corrosion resistance.

  • PDF

Analysis of Carbon Migration with Post Weld Heat Treatment in Dissimilar Metal Weld. (이종금속 피복용접부의 후열처리에 따른 탄소이동 해석)

  • Kim, Byeong-Cheol;Ann, Hui-Seong;Kim, Seon-Jin;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Pressurized Water Reactor (PWR) pressure vessels are made of forged low alloy steel plates internally clad with an austenitic stainless steel by welding to improve anti-corrosion properties. They display a characteristic behavior of dissimilar metal weld interface during post weld heat treatment (PWHT) and service at high temperature and pressure. In this Study, Metallugical structure of weld interface of SA 508 Class 3 forged steel clad with 309L, Austenitic stainless steel after PWHT was investigated. To estimate the width of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed and a theoretical equation was derived.

  • PDF

A Study for the Weldability and Welded Joint Performance on the SAW of HSA800 Steel (HSA800 강재의 SAW 용접성 및 이음성능 연구)

  • Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • In this research, 9 SAW welding specimens with 1 hour post-heat treatment (PH1) and 2 hours (PH2) were experimented to confirm the weldability and the joint performance of 60mm thickness HSA800 steel. SAW tests with PH1 & PH2, including weld impact test, bend test, hardness test, macroscopic test, and microscopic test, had a good test results. However, from the chemical composition test results, P composition was not satisfied with Korean Industrial Standards(KS). According to the weld-zone tensile tests, 2 hours post-heat SAW is recommended because the mechanical characteristics of SAW PH2 were better than those of SAW PH1.

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.

Evaluation of Microstructure and Mechanical Properties on Post-Weld Heat Treatment in the Heat Affected Zone of SA508 Gr.4N Ni-Mo-Cr Low Alloy Steel for Reactor Pressure Vessel (원자로압력용기용 SA508 Gr.4N Ni-Mo-Cr계 저합금강 용접열영향부의 용접후열처리에 따른 미세조직과 기계적 특성 평가)

  • Lee, Yoon-Sun;Kim, Min-Chul;Lee, Bong-Sang;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • The heat-affected zone (HAZ) of SA508 Gr.4N Ni-Mo-Cr low alloy steel, which has higher Ni and Cr contents than SA508 Gr.3 Mn-Mo-Ni low alloy steel, was investigated on the microstructure and mechanical properties. The HAZ was categorized into seven characteristic zones (CGCG, FGCG, ICCG, SCCG, FGFG, ICIC and SCSC-HAZ) according to the peak temperature from the thermal cycle experienced during multi-pass welding. Post Weld Heat Treatment (PWHT) was conducted in the temperature range of $550{\sim}610^{\circ}C$ for 30 hours to evaluate the effect of PWHT conditions on the microstructure and mechanical properties. Before PWHT, CGHAZ and FGFGHAZ showed high yield strength (YS) ranging from 1000 to 1250 MPa, while YS of SCSCHAZ decreased from 607 MPa (observed for base metal) to 501 MPa. The Charpy impact energies of sub-HAZs fell below 100J at $-29^{\circ}C$, except in the SCSCHAZ. By applying PWHT to sub-HAZ specimens, YS decreased as the PWHT temperature increased. In the case of CGHAZs and FGFGHAZ heat-treated at $610^{\circ}C$, YS dropped drastically to the range of 654~686 MPa. From the Charpy impact test, the upper-shelf energy (USE) increased to approximately 250J and Index temperature ($T_{68J}$) decreased below $-50^{\circ}C$. Specifically, in FGFG, ICIC and SCSC-HAZ, $T_{68J}$ was below -110, which was lower than the case of base metal.

A Study of Characteristics on the Dissimilar Metals (Alloy steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding: Part 2 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 2)

  • Shin, Tae Woo;Hyun, Jun Hyeok;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E71T-1C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, Intragranular polygonal ferrite and grainboundary ferrite were formed only in first layer of weld metal. Another layers consisted of acicular ferrite and $Widmannst{\ddot{a}}tten$ ferrite. The amount of acicular ferrite was increased with decreasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered martensite and lower bainite. Lower and upper bainite were formed in heat affected zone of carbon steel. Tensile strengths of dissimilar metal welds decreased with increasing heat inputs. Dissimilar metal welds showed a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals welds showed that the weight loss rate by corrosion below 170 hours was decreased with increasing heat inputs due to the increase of the amount of acicular ferrite.