Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.4.185

Effect of Electrical Resistance Welding on Microstructure and Mechanical Properties of API X70 Linepipe Steel  

Oh, Dong-Kyu (Department of Materials Science and Engineering, Seoul National University and Technology (SEOULTECH))
Choi, Ye-Won (Department of Materials Science and Engineering, Seoul National University and Technology (SEOULTECH))
Shin, Seung-Hyeok (Department of Materials Science and Engineering, Seoul National University and Technology (SEOULTECH))
Jeong, Han-Gil (Hyundai steel Company)
Kwack, Jin-Sub (Hyundai steel Company)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University and Technology (SEOULTECH))
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.4, 2022 , pp. 185-192 More about this Journal
Abstract
Variations in the microstructure and mechanical properties of API X70 steel processed by piping, electrical resistance welding (ERW), and post seam annealing (PSA) are investigated in this study. In the welding zone, some elongated pearlites are formed and grains coarsening occurs due to extra heat caused by the ERW and PSA processes. After the piping, the base metal shows continuous yielding behavior and a decrease in yield and impact strengths because mobile dislocation and back stress are introduced during the piping process. On the other hand, the ERW and PSA processes additionally decreased the impact strength of welding zone at room and low temperatures because some elongated pearlites easily act as crack initiation site and coarse ferrite grains facilitate crack propagation. As a result, the fracture surface of the welding zone specimen tested at low temperature revealed mostly cleavage fracture unlike the base metal specimen.
Keywords
Linepipe steel; ERW (Electrical Resistance Welding); Mechanical properties; Microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. E. Anderson : Master Thesis, University of Alberta (2018).
2 S. W. lee, S. I. Lee, and B. Hwang : Korean Journal of Metals and Materials, 58 (2020) 293-303.   DOI
3 S. I. Lee, S. W. Lee, S. G. Lee, S. Lee, H. G. Jung, and B. Hwang : Korean Journal of Metals and Materials, 56 (2018) 413-422.   DOI
4 F. Xiao, B. Liao, Y. Shan, G. Qiao, Y. Zhong, C. Zhang, and K. Yang : Materials Science and Engineering A, 431 (2006) 41-52.   DOI
5 G. Khalaj, H. Piraliakbar, M. R. Jandaghi, and A. Gholami : International Journal of Pressure Vessels and Piping, 152 (2017) 15-26.   DOI
6 A. A. Khalili, B. Beidokhti, and A. R. Kiani-Rashid : International Journal of Hydrogen Energy, 46 (2021) 1012-1022.   DOI
7 H. L. Kim and S. H. Park : Metals and Materials International, 26 (2020) 14-24.   DOI
8 D. M. Bastidas, A. Gil, U. Martin, J. Ress, and S. F. Medina: Engineering Failure Analysis, 129 (2021) 105690.   DOI
9 R. Datta and A. Deva : Practical Failure Analysis, 2 (2002) 59-62.   DOI
10 J. G. Williams : Materials Forum, 31 (2007).
11 S. W. Lee, S. I. Lee, and B. Hwang : Korean Journal of Materials Research, 27 (2017) 524-529.   DOI
12 T. Kelil, M. Amara, M. Meliani, B. Muthanna, Z. Bozic, R. Suleiman, A. Sorour, G. Pluvinage : Engineering Failure Analysis, 104 (2019) 578-588.   DOI
13 B. Hwang, Y. M. Kim, S. Lee, N. J. Kim, and S. S. Han : Metallurgical and Materials Transactions A, 36A (2005) 725-739.
14 M. C. Jo, S. G. Lee, S. S. Sohn, K. S. Kim, W. K. Kim, C. S. Lee, and S. Lee : Materials Science and Engineering A, 682 (2017) 304-311.   DOI
15 B. Hwang, Y. G. Kim, S. Lee, N. J. Kim, and J. Y. Yoo : Korean Journal of Metals and Materials, 42 (2004) 329-337.