• Title/Summary/Keyword: Post Heat Treatment

Search Result 448, Processing Time 0.029 seconds

Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy (분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향)

  • Choi, Young-Sin;Jang, Ji-Hoon;Kim, Gun-Hee;Lee, Chang-Woo;Kim, Hwi-Jun;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.340-345
    • /
    • 2018
  • Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.

Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material (압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향)

  • Lee, Sangmok;Kim, Su-Min;We, Se-Na;Bae, Dong-Hyun;Lee, Geun-An;Lee, Jong-Sup;Kim, Yong-Bae;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.

A Study on the Wave Formation and Hair Damage Levels Relating to the Uses of Treatments for Heat Permanent Waves

  • Kim, Kwan-Ok;Kim, Sung-Nam
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • Public interest in healthy hairs gets growing as damaged hairs are seen more frequently with the generalization of heat permanent waves. For this study, experiments have been conducted to understand the influences on the changes in physical and morphological features of wave forms and damaged hairs, by collecting virgin hairs from the women in their mid-20's, who had not experienced chemical applications, and by dividing the applications of heat perm hair treatments, PPT(for pre-treatment) and LPP(for post-treatment), into the pre-treatment, the post-treatment, the pre & post-treatment, and the non-treatment. For the wave formations, curl waves were investigated by the bare eyes using the pictures taken by a digital camera. For the comparison of physical features, the experiments of tensile strength and elongation were done and their mean values were found. For the observations of morphological features, the pictures were taken by SEM for comparison. As for the findings, regarding the curl wave shapes of hairs, the most even and elastic S curl was formed in the case of non-treatment. In the physical features, both of the tensile strength and elongation showed a decreasing tendency in line with the hair damage levels, and the case of the pre & post-treatment indicated the tendency most similar to the control group. In the morphological features of the cuticle, observed with an SEM, the pre-treatment showed the higher possibility of reducing the cuticle damages than the post-treatment did. LPP was found to play the role of protective membrane for the post-treatment, and the pre & post-treatment turned out to reduce most effectively the cuticle damages.

Development of Two-Step Surface Treatment on Carbon Nanotube Cathode for Backlight Unit Application

  • Ha, Sang-Hoon;Jung, Dea-Hwa;Park, Ki-Jung;Kwon, Na-Hyun;Choi, Young-Jun;Chang, Ji-Ho;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.152-155
    • /
    • 2009
  • A novel two-step surface treatment was developed and demonstrated for the carbon nanotube (CNT) cathode with highly efficient backlight unit application. An adhesive taping method was applied firstly and then followed by a post-heat treatment for the CNT cathode. During the postheat treatment process, some residues covering the CNTs were burned out. The post-heat treatment enhanced the emission current of the CNT cathode around 20% compared with that of no heat-treated sample.

  • PDF

Mechanical Properties of High Stength Sheet Steels for Auto-Body by Induction Heat Treatment (고주파열처리에 의한 자동차용 고강도 강판의 기계적 성질변화)

  • Lee, D.H.;Yoon, C.S.;Lim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.73-77
    • /
    • 2004
  • The efforts which increase the strength of the auto-body structure and decrease its weight lead to develop a new concept of part production systems, such as Post-Form Strengthening by induction heat treatment. In this study, several cold and hot-rolled sheet steels were used to find out optimum induction heat treatment conditions. After induction heat treatment, strength of heat-treated sheet steels was increased significantly compared with that of as-rolled steels. From these results, auto-body structure which has more light and safe has been made by using this induction hardening method.

Effect of process parameter and post heat treatment on the properties of aluminium bronze arc spray coating (알루미늄청동 아크 용사층의 성질에 미치는 용사 공정변수 및 후열처리 영향)

  • 김태호;박영구;윤정모;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.329-338
    • /
    • 2000
  • In this study, as an effort to improve the brittlement of coating layer, aluminum bronze coatings formed on steel substrates by arc jet spray process were subjected to post heat treatment. After each treatment, mechanical properties such as hardness, and UTS, and microstructural characterization of the specimens were investigated. The results showed that the hardness in the coatings slightly decreased with increasing heat treatment tine and temperature. The UTS of as-sprayed coatings was 4.31kgf/$\textrm{mm}^2$ and slightly increased to 5.51kgf/$\textrm{mm}^2$ after heat treatment at $900^{\circ}C$ for 120min. On the other hand, the interdiffusion of copper and aluminum particles after heat treatment lead to decrease of the porosity density and increase the bond strength.

  • PDF

The Effect of The Heat Treatment Condition and the Oxidation Process on the Microstructure of Ag-CdO Contact Materials (Ag-CdO계 전기접점재료의 미세조직에 미치는 열처리 조건과 산화 공정의 영향)

  • Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.226-232
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO material has a good wear resistance and stable contact resistance. In order to establish optimizing heat treatment condition, rolling temperature and oxidation process, we studied the microstructure of Ag-CdO material with various conditions. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. In this study, we obtained the optimizing heat treatment condition was $700^{\circ}C$ for 15 min. and the optimizing rolling temperature was $730^{\circ}C$. In investigation of the microstructure of oxidized material, coarse oxide and depleted oxidation layer existed. The hardness was average Hv 70. When we used Post-oxidation, oxides were finer than prior process and depleted oxidation layer did not exist. The hardness of Post-oxidation material was average Hv 80. And the optimizing rolling temperature was $800^{\circ}C$.

A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint (T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구)

  • Bang, Han-Seo;Kim, Jong-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

Control of Nano-Scaled Surface Microstructure of Al Sample for Improving Heat Release Ability (Al 소재의 방열특성 향상을 위한 미세조직 제어 연구)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • In this study, the control of microstructure for increasing surface roughness of Al with an electro-chemical reaction and a post treatment is systematically investigated. The Al specimen is electro-chemically treated in an electrolyte. In condition of the post treatment at $100^{\circ}C$ for 10 min, a change of the surface microstructure occur at 50V (5 min), and a oxidized layer is at 400V, to which lead a decreasing surface roughness. The minimum temperature of the post treatment for a change of microstructure is $80^{\circ}C$. Moreover, in the condition of 300V (5 min), the electro-chemical reaction is followed by the post treatment at $100^{\circ}C$, the critical enduring time for the change of microstructure is 3 min. The longer post treatment time leads to the rougher surface. The treated Al specimen demonstrate better heat release ability owing to the higher surface roughness than the non-treated Al.

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.