• Title/Summary/Keyword: Post weld heat treatment(PWHT)

Search Result 74, Processing Time 0.027 seconds

Electrochemical Study on the Effect of Post-Weld Heat Treatment Affecting to Corrosion Resistance Property of the Weldment of SCM440 Steel (SCM440강 용접부의 내식성에 미치는 용접후 열처리효과에 관한 전기화학적 연구)

  • 김성종;김진경;김종호;김기준;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.78-88
    • /
    • 2000
  • The effect of post-weld heat treatment(PWHT) of SCM440 steel was investigated with parameters such as micro-Vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss, etc. Each hardness of three parts(HAZ, BM, WM) by PWHT is lower than each of as-welded parts. However, hardness of WM area was the highest among those three parts in case of both PWHT and as-welded. Corrosion potential of WM part was the highest among those three parts and WM area was also acted as cathode without regard to PWHT. The magnitude of corrosion potential difference among three parts by PWHT was larger than that of three parts of as-welded, and corrosion current by galvanic cell of these three parts by PWHT was also larger compared to as-welded. Therefore, it is suggested that corrosion resistance property of SCM440 steel is decreased by PWHT than as-welded. However, both Al anode generating current and anode weight loss were also increased by PWHT compared to as-welded when SCM400 steel is cathodically protected by Al anode.

  • PDF

EFFECTS OF AGING TREATMENT ON MICROSTRUCTURE AND STRENGTH OF WELD HEAT AFFECTED ZONE OF 6N01-T5 ALUMINUM ALLOY

  • Yoshida, Naoharu;Shibao, Masami;Ema, Mitsuhiro;Sasabe, Seiji;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • Effects of the aging treatments on the microstructure and strength of heat affected zone(HAZ) in the welds of a age-hardened Al-Mg-Si alloy, 5N01-T5, were investigated. The base metal aging treatments before MIG welding were conducted at 423K to 473K for 28.8ks Post weld heat treatment(PWHT) to recover the HAZ strength was performed at 448K for 28.8ks. Microstructure observations, hardness measurements and tensile tests were conducted to study properties of the MIG weld joints. The position of the softest region in HAZ where the hardness insufficiently recovered after natural aging and PWHT was at a distance of approximately 15mm from the center of the fusion zone. Hardness of the softest regions after natural aging and PWHT decreased with increase in the base metal aging temperature. TEM observation clarified that strengthening ${\beta}$"(Mg$_2$Si) precipitates and coarse ${\beta}$′ precipitates affected the hardnes of HAZ. Incomplete recover of hardness in HAZ after PWHT was caused by the precipitating of non-hardening ${\beta}$′ phase during the weld thermal cycle. In order to examine the effects of weldheat input and welding speed, the laser weld joints were also investigated and compared with the MIG weld ones. Laser welding had the narrower width of the softened regions in HAZ compared with MIG welding. The hardness of the softest regions of the laser welds after PWHT was higher than that of the MIG welds. Quantitative relations between hardness of the softest region and base metal aging temperature were obtained for both welding processes. Accordingly, the equations to estimate the strength of the weld joints after PWHT with varying base metal temperatures were proposed for MIG welding and laser welding.

  • PDF

The Effect of PWHT on Fracture Toughness in HAZ of Cr-Mo Steel (Cr-Mo鋼 熔接熱影響部 의 破壞靭性 에 미치는 熔接後 熱處理 의 影響)

  • 정세희;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 1984
  • Post weld heat treatment(PWHT) of weldment of the low alloy steel is carried out to remove residual stress existing in weldment and to improve fracture toughness, but it is often observed that there occurs grain boundary failure and that fracture toughness decreases in weld heat affected zone(HAZ)because of PWHT. In this paper, the effect of heating rate and holding time of PWHT on fracture toughness were evaluated by crack opening displacement (CDD)test and micro-hardness test under the constant stress simulated residual stress in HAZ of Cr-Mo steel. The experimental results are as follow; (1)Transition temperature of weld HAZ after PWHT was dependent upon heating rate greater than holding time, and fracture toughness was decreased with an increase of the heating rate. (2)Softening ration of the notch tip was increased with holding time within one hour and saturated after one hour, but under applied stress it was increasing continuously. (3)The average hardness value in weld HAZ was increased with heating rate of PWHT.

Analysis of Carbon Migration with Post Weld Heat Treatment in Dissimilar Metal Weld. (이종금속 피복용접부의 후열처리에 따른 탄소이동 해석)

  • Kim, Byeong-Cheol;Ann, Hui-Seong;Kim, Seon-Jin;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Pressurized Water Reactor (PWR) pressure vessels are made of forged low alloy steel plates internally clad with an austenitic stainless steel by welding to improve anti-corrosion properties. They display a characteristic behavior of dissimilar metal weld interface during post weld heat treatment (PWHT) and service at high temperature and pressure. In this Study, Metallugical structure of weld interface of SA 508 Class 3 forged steel clad with 309L, Austenitic stainless steel after PWHT was investigated. To estimate the width of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed and a theoretical equation was derived.

  • PDF

The Effects of Heat Treatment on the Fatigue Life and Welding Residual Stress of Welded Carbon Steel Plates (탄소강 후판용접부의 피로수명 및 잔류응력에 미치는 열처리 영향)

  • An, I.T.;Kim, W.T.;Jo, J.R.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The effects of heat treatment on the fatigue life and welding residual stress of welded plates were investigated in this study. The plates were welded by flux cored arc welding process, and post weld heat treated at $600^{\circ}C$ for 1 hour. The residual stresses of welded plates before and after post weld heat treatment were measured by hole drilling method. To measure the fatigue life of welded plates, low cycle fatigue tests under strain control and high cycle fatigue tests under load control were performed respectively, by using cylindrical specimens containing weld metal and heat affected zone. The obtained result shows that the post weld heat treatment reduces the residual stress, and resultantly changes the fatigue life of welded plate. Goodman diagrammatic analysis has also been performed to study the effect of post weld heat treatment on the high cycle fatigue life.

A Study on the Post-Weld Heat Treatment Effect Affecting Corrosion Behavior and Mechanical Property of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강 용접부의 부식거동 및 기계적 특성에 미치는 용접후 열처리 효과에 관한 연구)

  • 김성종;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 2001
  • A study on the corrosion behavior in case of As-welded and PWHT temperature 55$0^{\circ}C$ of welding part of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential measurement of weld metal(WM), base metal(BM) and heat affected zone(HAZ), both Al anode generating current and Al anode weight loss quantity under sacrificial anode cathodic protection conditions. And also we carried out slow strain rate test(SSRT) in order to research both limiting cathodic polarization potential for hydrogen embrittlement and optimum cathodic protection potential as well as mechanical properties by post-weld heat treatment(PWHT) effect. Hardness of HAZ was the highest among three parts(WM, BM and HAZ) and the highest galvanic corrosion susceptibility was HAZ. And the optimum cathodic polarization potential showing the best mechanical properties by SSRT method was from -770mV to -875mV(SCE). In analysis of SEM fractography, applied cathodic potential from -770mV to -875mV(SCE) it appeared dimple pattern with ductile fracture while it showed transgranular pattern (Q. C : quasicleavage) under -900mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement was under -900mV(SCE).

  • PDF

The Effect of Ferrite Ratio on the Properties of PWHT Overlaid Welds (Duplex SS 육성 용접부의 물성에 미치는 열처리전 페라이트 함량의 영향)

  • Seong, Hui-Jun;Kim, Yeong-Il;Seo, Chang-Gyo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.294-296
    • /
    • 2005
  • Several duplex overlaied-weldments which have different ferrite ratio were prepared by changing welding heat input ant post weld heat treatment were carried out to understand the effect of the ferrite ratio on the precipitation during post weld heat treatment. High heat input weldment indicated low ferrite ratio, while low heat input weldment has high ferrite ratio. Low ferrite ratio weldment showed much and faster precipitation. But high ferrite ratio weldment showed less and slower precipitation.

  • PDF

A Study on the Post-Weld Heat Treatment Effect to Mechanical Properties and Hydrogen Embrittlement for Heating Affected Zone of a RE 36 Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Jin-Gyeong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.283-288
    • /
    • 2003
  • The cathodic protection method is being widely used in marine structural steel, however a high tensile steel like RE 36 steel for marine structural steel is easy to get hydrogen embrittlement due to over protection during cathodic protection as well as preferential corrosion of HAZ(Heating Affected Zone) part. In this paper, corrosion resistance and mechanical properties such as elongation and hydrogen embrittlement were investigated with not only in terms of electrochemical view but also SSRT(Slow Strain Rate Test) method with applied constant cathodic potential, analysis of SEM fractography in case of both As-welded and PWHT(Post-Weld Heat Treatment) of $550^{\circ}C$. The best effect for corrosion resistance was apparently indicated at PWHT of $550^{\circ}C$ and elongation was increased with PWHT of $550^{\circ}C$ than that of As-welded condition. On the other hand. Elongation was decreased with applied potential shifting to low potential direction which may be caused by hydrogen embrittlement, however the susceptibility of hydrogen embrittlement was decreased with PWHT of $550^{\circ}C$ than that of As-welded condition and Q.C(quasi cleavage) fracture mode was also observed significantly according to increasing of susceptibility of hydrogen embrittlement. Eventually it is suggested that an optimum cathodic protection potential range not causing hydrogen embrittlernent is from -770 mV(SCE) to -850 mV(SCE) in As-welded condition while is from -770 mV(SCE) to -875 mV(SCE) in PWHT of $550^{\circ}C$.

PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels (핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성)

  • Lee, Jinjong;Moon, Joonoh;Lee, Chang-Hoon;Park, Jun-Young;LEE, Tae-Ho;Hong, Hyun-Uk;Cho, Kyung-Mox
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.

A Study on Weld Residual Stress Relaxation by furnaced and local PWHT Procedures (노내 및 국부 후열처리에 의한 잔류응력 완화 거동 평가)

  • Lee, Seung-Gun;Kim, Jong-Sung;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.250-255
    • /
    • 2004
  • In this paper, we established baseline information and insight on residual stress relief mechanism associated with furnaced and local PWHT(post weld heat treatment) operation. Based on FEM analysis results, we suggested that furnaced PWHT stress relief mechanism was based on creep relaxation and local PWHT stress relief mechanism involved complicated interactions between plasticity and creep. In case of furnaced PWHT, significant stress relaxation was occurred in the early stage of PWHT. In case of local PWHT, stress relaxation magnitude was increased as PWHT time increased. Finally, We have proposed that detailed furnaced and local PWHT procedure, and qualification criteria to support current codes of practices.

  • PDF