• Title/Summary/Keyword: Positive-sequence power

Search Result 97, Processing Time 0.031 seconds

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

A Study on DVR Control for Unbalanced Voltage Compensation

  • Jung Hong-Ju;Suh In-Young;Kim Byung-Seob;Kim Rae-Young;Choi See-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.803-807
    • /
    • 2001
  • This paper presents a new control scheme for a DVR (Dynamic Voltage Restorer) system consisting of series voltage source PWM converters. To control the negative sequence components of the source, it is necessary to detect the negative sequence components. Generally, a filtering process is used which has some undesirable effects. This paper suggests a new method for separating positive and negative sequences components. This control system is designed using differential controllers and digital filters. The positive and negative sequences are extracted and controlled individually. The performance of the presented controller and scheme are confirmed through simulation and actual experiment with a 2.5kVA prototype DVR system.

  • PDF

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

Implementation of Dual Current Controller and Realtime Power Limiting Algorithm in Grid-connected Inverter during Unbalanced Voltage Conditions (전원 전압 불평형시 계통연계형 인버터의 유효전력 리플 억제를 위한 듀얼 전류제어기 구현과 출력 전력의 실시간 제한 알고리즘)

  • Song Seung-Ho;Kim Jeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • A power limiting algorithm is proposed for stable operation of grid-connected inverter in case of grid voltage unbalance considering the operation limit of inverter. During the voltage unbalance the control performance of Inverter. is degraded and the output power contains 120Hz ripple due to the negative sequence of voltage. In this paper, conventional dual sequence current controller is implemented to solve these problems using separated control of positive and negative sequence. Especially the maximum power limit which guarantees the maximum rated current of the inverter is automatically calculated as the instant grid voltage changes. As soon as the voltage recovers the proposed algorithm can return to the normal power control mode accomplishing low voltage ride through. Proposed algorithm is verifed using PSCAD/EMTDC simulations and tested experimentally at 4.4kW wind turbine simulator set-up.

New Control Strategy for Three-Phase Grid-Connected LCL Inverters without a Phase-Locked Loop

  • Zhou, Lin;Yang, Ming;Liu, Qiang;Guo, Ke
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.487-496
    • /
    • 2013
  • The three-phase synchronous reference frame phase-locked loop (SRF-PLL) is widely used for synchronization applications in power systems. In this paper, a new control strategy for three-phase grid-connected LCL inverters without a PLL is presented. According to the new strategy, a current reference can be generated by using the instantaneous power control scheme and the proposed positive-sequence voltage detector. Through theoretical analysis, it is indicated that a high-quality grid current can be produced by introducing the new control strategy. In addition, a kind of independent control for reactive power can be achieved under unbalanced and distorted grid conditions. Finally, the excellent performance of the proposed control strategy is validated by means of simulation and experimental results.

An Integrated Compensation Algorithm for PCC Voltage Fluctuation and Unbalance with Variable Limit of Positive and Negative Sequence Currents

  • Im, Ji-Hoon;Song, Seung-Ho;Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.751-760
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation algorithm using a current limitation strategy for use in distributed generation (DG). The proposed strategy maintains the PCC voltage by prioritizing currents when an output current reference is larger than the current capacity of the power condition system (PCS) of the DG. With this strategy, the DG outputs the active current, reactive current, and the negative sequence current. The DG uses the reactive current for maintaining the PCC voltage within a normal range; the negative sequence current is used for reducing the PCC voltage unbalance. The proposed method was verified using PSIM simulation and experimental results.

Compensation of Source Voltage Unbalance and Current Harmonics in Series Active and Shunt Passive Power Filters

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.586-590
    • /
    • 2001
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for hybrid active power filters is proposed, where no low/high-pass filters are used in compensation voltage composition. The phase angle and compensation voltages for source harmonic current and unbalanced voltage components are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. Since a balanced set of the source voltage obtained by scaling the positive sequence components is used as reference values for source current and load voltage, it is possible to eliminate the necessity of low/high-pass filters in the reference generation. Therefore the control algorithm is much simpler and gives more stable performance than the conventional method. In addition, the source harmonic current is eliminated by compensating for the harmonic voltage of the load side added to feedback control of the fundamental component.

  • PDF

A Comparative Study of Frequency Estimation Techniques using High Speed FIR Filter and Phasor Angle between Two Phasors (고속 FIR 필터와 두 페이저 위상을 이용한 주파수 추정 알고리즘의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Frequency is an important operating parameter of a power system. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And frequency measurement devices have need to measure a fast and accurate of frequency using voltage signals. This paper proposes a comparative study of frequency estimation techniques using the high speed FIR filter based algorithm, the DFT filter based algorithm using phasor angle between two phasors, and positive sequence component based algorithm using the half angle between two successive positions of phasor. The discussed three techniques have been formed through numerical manipulation of a discrete system. The proposed techniques have been tested using signals obtained from selected power system model using ATP simulation package. Some test results are shown in this paper.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Comprehensive Coordinated Control Strategy of Virtual Synchronous Generators under Unbalanced Power Grid

  • Wang, Shuhuan;Han, Li;Chen, Kai
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1554-1565
    • /
    • 2019
  • When grid voltage is unbalanced, the grid-connected output current and power of Virtual Synchronous Generators (VSGs) are distorted and quadratic. In order to improve the power quality of a grid connected to a VSG when the grid voltage is unbalanced, a comprehensive coordinated control strategy is proposed. The strategy uses the positive sequence current reference command obtained by a VSG in the balanced current control mode to establish a unified negative sequence current reference command analytical expression for the three objectives of current balance, active power constant and reactive power constant. In addition, based on the relative value of each target's volatility, a comprehensive wave function expression is established. By deriving the comprehensive wave function, the corresponding negative sequence current reference value is obtained. Therefore, the VSG can achieve the minimum comprehensive fluctuation under the premise that the three targets meet the requirements of grid connection, and the output power quality is improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.