• Title/Summary/Keyword: Positive moment

Search Result 315, Processing Time 0.027 seconds

Optimal Design of I-type Girder in 2 Span Continuous Steel Bridges by LRFD (LRFD에 의한 2경간 연속 강교량 주부재의 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.78-85
    • /
    • 1999
  • In this study, I-type girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. The main program is coded with C++ and connected with optimization modul ADS, which is coded with FORTRAN. The results of the program show that the stress constraints of noncomposite section during the initial construction stage become active in the positive moment area and the service limit state constaints become active in the negative moment area.

  • PDF

Effects of Creep and Shrinkage on Composite Box Girder (복합상자교량의 콘크리트 건조수축과 크리프 영향력)

  • Kim, Sung Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.17-22
    • /
    • 1986
  • The primary objective of this study is to compare the effects that are caused by shrinkage and creep of a concrete bridge deck during its construction. In this study four different bridge structures were compared. Two straight box girders and two curved box girders were compared for stress changes in positive moment region and negative moment region due to the effects of concrete. The effects on displacement behavior by the assumed section length by concrete placement were also studied. The analyses were performed by using Vlasov equation and finite difference numerical method to solve the governing differential equation.

  • PDF

A Study for Stiffness Improvement Method with Use of Filled Concrete in Continued Steel Box Girder Bridge (강상자형 연속교에서 콘크리트재를 이용한 부모멘트 구간의 강성향상공법)

  • 구민세;이호경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.69-78
    • /
    • 1999
  • The stiffness of slab concrete section is not considered as effective in the existing method of construction for continued steel box girder bridge. Using lifting system and filled concrete, it is possible to make stiffness of slab concrete section effective and improve stiffness of negative moment section. It was proved that the stress of upper flange in positive moment is significantly lower than case of existing method through the stress comparison. This stress difference made possible to rearrange flange thickness and as the result of this rearrangement, the amount of steel and height of girder can be reduced up to 13.23% and 11.5%.

  • PDF

Determination of Span Length Ratio in Bridges Constructed using a Free Cantilever Method (FCM 교량의 경간비(SLR) 결정)

  • 곽효경;손제국
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.259-266
    • /
    • 2003
  • This paper introduces a relation to determine the span ratio between exterior and interior spans, which is strongly required in the preliminary design stage of bridges constructed by Free Cantilever Method (FCM). A relation for the initial tendon force is derived on the basis of an assumption that no vertical deflection occurs at the far end of a cantilever beam due to the balanced condition between the self-weight and the cantilever tendons. In advance, the span ratio can be determined by using an assumption that the negative maximum moment must be the same with the positive maximum moment along the entire spans to be a rational bridge design. Finally, many rigorous lime-dependent analyses are conducted to establish the validity of the introduced relations. The obtained numerical results show that the rational design of FCM bridges may be achieved when the span length ratio of the exterior span to the interior span ranges about 0.75 to 0.8.

  • PDF

A Study on the Analysis of Overload of a Two-Span Continuous Bridige (2경간 연속교의 과재하중 해석방법에 관한 연구)

  • 한상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 1993
  • Residual Deformation Analysis(RDA) is a new method for ratings of the continuous bridges. The RDA makes it possible to expand the inelastic steel girder bridge design method set forth in the American Association of State Highway Officals'(AASHTO) Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections(1986) into an inelastic rating method. It is a method to assess the residual moments and deformations that are set up in a beam that has been loaded into the post-elastic range This method combines classical elastic conjugate beam theory with linear moment-rotation relationships for midspan inelastic positive moment. The limit state is inelastic serviceability limit. which is defined as the ratio of the span to midspan inelastic deflection(C=L/D).

  • PDF

A Reliable SVD Based Watermarking Scheme Resistant to Geometric Attacks (기하학적 공격에 강한 고신뢰성 SVD 기반 워터마킹방안)

  • Dung, Luong Ngoc Thuy;Sohn, Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.87-89
    • /
    • 2018
  • We proposed an improved reliable SVD-based watermarking scheme resistant to geometric attacks while having high fidelity with no false-positive problem. Principal components of a watermark image are embedded into singular values of LL, LH, HL, and HH sub-bands of a transformed cover image by RDWT(redundant discrete wavelet transform) with optimal scale factors. Each scale factor is generated by trading-off fidelity and robustness using Differential Evolution (DE) algorithm. Zernike Moment (ZM) is used to estimate the geometric distortion and to correct the watermarked image before extracting watermark. The proposed scheme improves fidelity and robustness of existing reliable SVD based watermarking schemes while resisting to geometric attacks.

  • PDF

Flexural Behaviors of PSC Composite Girders in Positive Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 정모멘트 구간 거동)

  • Kang, Byeong-Su;Sung, Won-Jin;Chang, Young-Kil;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.313-320
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the positive moment regions are investigated based on the experimental observations recently performed on two of 4.4m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one- and three-dimensional nonlinear finite element analyses, and section analysis method.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

Behavior Analysis of RMPM Applied Steel Frame Structures (반력모멘트를 이용한 라멘형 철골구조물의 거동분석)

  • Ahn, Jin Hee;Kim, Jun Hwan;Kim, Tae Yeon;Kim, Sang Hyo;Lee, Sang Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.611-620
    • /
    • 2007
  • The beam-column connection is the critical design section of general steel frame structures owing to the behavioral characteristics of the structural system. As most members of a frame structure are composed of rolled section beams, the cross-section of the beam members is governed by the negative bending moment near beam-column connections. Such a design concept leaves a redundant load-carrying capacity at the positive bending regions of the beam members leading to design inefficiency. Therefore, it is of utmost importance to redistribute the beam end moments and reduce the stresses at the beam-column connections for a more efficient design of steel frame structures. In this study, reaction-moment prestressing method (RMPM) was proposed for the innovative design and construction of steel frame structures. The RMPM is a prestressing method utilizing the elastic bending deformation of a beam member induced by temporary prestressing for the distribution of a relatively large bending moment to other sections for the efficient use of the beam section. By the application of the RMPM, the negative bending moment at the beam-column connections can be significantly reduced, ultimately leading to possible use of smaller beam sections. Through a series of model tests and numerical analyses of steel frame structures, the moment distributing effect and feasibility of the RMPM was verified.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.