• 제목/요약/키워드: Positive and negative sequence

검색결과 243건 처리시간 0.022초

Design and Evaluation of a Protection Relay for a Wind Generator Based on the Positive- and Negative-Sequence Fault Components

  • Zheng, Taiying;Cha, Seung-Tae;Kim, Yeon-Hee;Crossley, Peter A.;Lee, Sang Ho;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1029-1039
    • /
    • 2013
  • To avoid undesirable disconnection of healthy wind generators (WGs) or a wind power plant, a WG protection relay should discriminate among faults, so that it can operate instantaneously for WG, connected feeder or connection bus faults, it can operate after a delay for inter-tie or grid faults, and it can avoid operating for parallel WG or adjacent feeder faults. A WG protection relay based on the positive- and negative-sequence fault components is proposed in the paper. At stage 1, the proposed relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults requiring non-operation response from those requiring instantaneous or delayed operation responses. At stage 2, the fault type is first determined using the relationships between the positive- and negative-sequence fault components. Then, the relay differentiates between instantaneous operation and delayed operation based on the magnitude of the positive-sequence fault component. Various fault scenarios involving changes in position and type of fault and faulted phases are used to verify the performance of the relay. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. Results indicate that the relay can successfully distinguish the need for instantaneous, delayed, or non-operation.

이중 변환 UPS 병렬 운전의 제어 동특성 향상을 위한 동기 좌표계 전압 제어기 구조 (Voltage Control Scheme in Synchronous Reference Frame for Improving Dynamic Characteristics in Parallel Operation of Double-Conversion UPSs)

  • 모재성;윤영두;류효준;이민성;최승철;김성민;김석민;강호현;김희중
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.283-290
    • /
    • 2022
  • This study proposes a voltage control scheme in a synchronous reference frame to improve the dynamic characteristics of double-conversion UPSs. UPSs need to control positive and negative sequence voltage, so that positive and negative sequence extractors are generally used to obtain each sequence of the voltage and current. Voltage and current controllers for each sequence are implemented. However, the extractor causes considerable delay, and the delay restricts the control performance, especially for the current controller. To improve the dynamics of the current controller, the proposed scheme adopts a unified current controller without separating positive and negative sequences. By using discrete-time current controller, the control bandwidth can be extended significantly so that negative sequence current can be controlled. To enhance the performance, an additional feed-forward technique for output voltage regulation is proposed. The validity of the proposed controller is verified by experiments.

불평형 전압 조건에 강인한 모듈형 멀티레벨 컨버터의 순환전류 억제기법 (Robust Circulating Current Control in MMC Under the Unbalanced Voltage Condition)

  • 문지우;박정우;강대욱;김장목
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.996-997
    • /
    • 2015
  • This paper proposes parameter design principle of the sub-module capacitance, Arm inductance and a control method to reduced the circulating currents in modular multilevel converter(MMC) under unbalanced voltage conditions. Under balanced voltage conditions, only negative-sequence circulating currents exist. Consequently, the conventional method has considered only negative-sequence circulating currents in MMC. However, under unbalanced voltage conditions, there are positive-sequence, zero-sequence and negative-sequence circulating currents in MMC. Thus, under unbalanced voltage conditions, a control method should consider these all components. This study proposes the control method to reduced the circulating currents under the unbalanced voltage.

  • PDF

An Improved Control Strategy Using a PI-Resonant Controller for an Unbalanced Stand-Alone Doubly-Fed Induction Generator

  • Phan, Van-Tung;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.194-202
    • /
    • 2010
  • The main cause of degradation in an unbalanced stand-alone doubly-fed induction generator (DFIG) system is negative sequence components that exist in the generated stator voltages. To eliminate these components, a hybrid current controller composed of a proportional-integral controller and a resonant regulator is developed in this paper. The proposed controller is applied to the rotor-side converter of a DFIG system for the purpose of compensating the negative stator voltage sequences. The proposed current controller is implemented in a single positive rotating reference frame and therefore the controller can directly regulate both the positive and negative sequence components without the need for sequential decomposition of the measured rotor currents. In terms of compensation capability and accuracy, simulations and experimental results demonstrated the excellent performance of the proposed control method when compared to conventional vector control schemes.

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

정상 성분 변화량을 이용한 송전선로 보호용 방향 계전 알고리즘 (A Directional Relay Algorithm Using Positive-Sequence Superimposed Quantity for Transmission Line Protection)

  • 이명수;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권4호
    • /
    • pp.226-233
    • /
    • 2003
  • Directional elements are fundamental to protection scheme security and selectivity, performing such critical tasks as supervising distance elements and controlling overcurrent elements. But, conventional operating principles for directional detection based on negative or zero sequence quantify do not satisfy the requirements for improved sensitivity and fast operation under any fault conditions. In this paper, new algorithm for directional elements is proposed. The proposed algorithm use the positive-sequence superimposed voltages and currents in order to be used in all fault conditions. Also, because this algorithm uses a voltage compensation method. it can be well operated under strong source conditions.

CONSISTENCY AND GENERAL TRUNCATED MOMENT PROBLEMS

  • Yoo, Seonguk
    • 충청수학회지
    • /
    • 제31권4호
    • /
    • pp.487-509
    • /
    • 2018
  • The Truncated Moment Problem (TMP) entails finding a positive Borel measure to represent all moments in a finite sequence as an integral; once the sequence admits one or more such measures, it is known that at least one of the measures must be finitely atomic with positive densities (equivalently, a linear combination of Dirac point masses with positive coefficients). On the contrary, there are more general moment problems for which we aim to find a "signed" measure to represent a sequence; that is, the measure may have some negative densities. This type of problem is referred to as the General Truncated Moment Problem (GTMP). The Jordan Decomposition Theorem states that any (signed) measure can be written as a difference of two positive measures, and hence, in the view of this theorem, we are able to apply results for TMP to study GTMP. In this note we observe differences between TMP and GTMP; for example, we cannot have an analogous to the Flat Extension Theorem for GTMP. We then present concrete solutions to lower-degree problems.

Droop Control Scheme of a Three-phase Inverter for Grid Voltage Unbalance Compensation

  • Liu, Hongpeng;Zhou, Jiajie;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1245-1254
    • /
    • 2018
  • The stability of a grid-connected system (GCS) has become a critical issue with the increasing utilization of renewable energy sources. Under grid faults, however, a grid-connected inverter cannot work efficiently by using only the traditional droop control. In addition, the unbalance factor of voltage/current at the common coupling point (PCC) may increase significantly. To ensure the stable operation of a GCS under grid faults, the capability to compensate for grid imbalance should be integrated. To solve the aforementioned problem, an improved voltage-type grid-connected control strategy is proposed in this study. A negative sequence conductance compensation loop based on a positive sequence power droop control is added to maintain PCC voltage balance and reduce grid current imbalance, thereby meeting PCC power quality requirements. Moreover, a stable analysis is presented based on the small signal model. Simulation and experimental results verify the aforementioned expectations, and consequently, the effectiveness of the proposed control scheme.

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

지중송전선로의 대칭분 임피던스 모델링에 관한 연구 (A Study on the Sequence Impedance Modeling of Underground Transmission Systems)

  • 황영록;김경철
    • 조명전기설비학회논문지
    • /
    • 제28권6호
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.