• Title/Summary/Keyword: Positioning.Navigation.Timing

Search Result 435, Processing Time 0.022 seconds

Performance Analysis of Wide-Area Differential Positioning Based on Regional Navigation Satellite System

  • Kim, Donguk;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • The position accuracy of the stand-alone Regional Navigation Satellite System (RNSS) users is more than tens of meters because of various error sources in satellite navigation signals. This paper focuses on wide-area differential (WAD) positioning technique, which is already applied in Global Navigation Satellite System (GNSS), in order to improve the position accuracy of RNSS users. According to the simulation results in the very narrow ground network in regional area, the horizontal position error of stand-alone RNSS is about RMS 11.6 m, and that of RNSS with WAD technique, named the WAD-RNSS, is about RMS 2.5 m. The accuracy performance has improved by about 78%.

Multi-GNSS Standard Point Positioning using GPS, GLONASS, BeiDou and QZSS Measurements Recorded at MKPO Reference Station in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • The Global Navigation Satellite System (GNSS) is undergoing dramatic changes. Nowadays, much more satellites are transmitting navigation data at more frequencies. A multi-GNSS analysis is performed to improve the positioning accuracy by processing combined observations from different GNSS. The multi-GNSS technique can improve significantly the positioning accuracy. In this paper, we present a combined Global Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), the China Satellite Navigation System (BeiDou), and the Quasi-Zenith Satellite System (QZSS) standard point positioning (SPP) method to exploit all currently available GNSS observations at Mokpo (MKPO) station in South Korea. We also investigate the multi-GNSS data recorded at MKPO reference station. The positioning accuracy is compared with several combinations of the satellite systems. Because of the different frequencies and signal structure of the different GNSS, intersystem biases (ISB) parameters for code observations have to be estimated together with receiver clocks in multi-GNSS SPP. We also present GPS/GLONASS and GPS/BeiDou ISB values estimated by the daily average.

Development of an IGVM Integrated Navigation System for Vehicular Lane-Level Guidance Services

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.119-129
    • /
    • 2016
  • This paper presents an integrated navigation system for accurate navigation solution-based safety and convenience services in the vehicular augmented reality (AR)-head up display (HUD) system. For lane-level guidance service, especially, an accurate navigation system is essential. To achieve this, an inertial navigation system (INS)/global positioning system (GPS)/vision/digital map (IGVM) integrated navigation system has been developing. In this paper, the concept of the integrated navigation system is introduced and is implemented based on a multi-model switching filter and vehicle status decided by using the GPS data and inertial measurement unit (IMU) measurements. The performance of the implemented navigation system is verified experimentally.

A Design of LORAN Disciplined Oscillator

  • Hwang, Sang-Wook;Choi, Yun Sub;Yeo, Sang-Rae;Park, Chansik;Yang, Sung-Hoon;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2013
  • This article presents the design of long range navigation (LORAN)-disciplined oscillator (LDO), employing the timing information of the LORAN system, which was developed as a backup system that corrects the vulnerability of the global positioning system (GPS)-based timing information utilization. The LDO designed on the basis of hardware generates a timing source synchronized with reference to the timing information of the LORAN-C receiver. As for the LDO-based timing information measurement, the Kalman filter was applied to estimate the measurement of which variance was minimized so that the stability performance could be improved. The oven-controlled crystal oscillator (OCXO) was employed as the local oscillator of the LDO. The controller was operated by digital proportional-integral-derivative (PID) controlling method. The LDO performance evaluation environment that takes into account the additional secondary factor (ASF) of the LORAN signals allows for the relative ASF observation and data collection using the coordinated universal time (UTC). The collected observation data are used to analyze the effect of ASF on propagation delay. The LDO stability performance was presented by the results of the LDO frequency measurements from which the ASF was excluded.

Design and Analysis of Switching Timing for High Power GPS Meaconing Jammer

  • Lee, Byung-Hyun;Oh, In-Geun;Kim, Sung-Il
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • The purpose of satellite navigation meaconing jamming is to make the target GPS receiver calculate false navigation by meaconing the received satellite signals. At this time, since the received and transmitted signals have the same frequency, the back-lobe reduction level of antenna should be -160 dB when the Effective Radiated Power (ERP) is 1 Watt (30 dBm). Therefore, meaconing jamming is impossible by merely reducing the back-lobe level of antenna when the transmitter and receiver are in proximity to each other. In general, the transmitter and receiver are isolated by the time division method to eliminate such transmission/reception interference. This paper studied the optimal switching timing between transmitting and receiving when isolating the time division transmission and reception for GPS meaconing jamming.

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Tightly-Coupled GPS/INS/Ultrasonic-Speedometer/Barometer Integrated Positioning for GPS-Denied Environments

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, Lawoo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • Accuracy of an integrated Global Positioning System (GPS) / Inertial Navigation System (INS) relies heavily on the visibility of GPS satellites. Especially, its accuracy is dramatically degraded in urban canyon due to signal obstructions due to large structures. In this paper, we propose a new integrated positioning system that effectively combines INS, GPS, ultrasonic sensor, and barometer in GPS-denied environments. In the proposed system, the ultrasonic sensor provides velocity information along the forward direction of moving vehicle. The barometer output provides height information compensated for the pressure variation due to fast vehicle movements. To evaluate the performance of the proposed system, an experiment was carried out by mounting the proposed system on a test car. By the experiment result, it was confirmed that the proposed system bears good potential to maintain positioning accuracy in harsh urban environments.

Development of 3-Dimensional Position/Attitude Determination Radio-navigation System with FLAOA and TOA Measurements

  • Jeon, Jong-Hwa;Lim, Jeong-Min;Yoo, Sang-Hoon;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.61-71
    • /
    • 2018
  • Existing radio positioning systems have a drawback that the attitude of user's tag is difficult to be determined. Although forward link angle of arrival (FLAOA) technology that uses measurements of array antenna arranged in a tag among the angle of arrival (AOA) technologies can estimate attitude and positioning of tags, it cannot extend the estimated results into three-dimensional (3D) results due to complex non-linear model displayed because of the effects of 3D positioning and attitude in tags. This paper proposed a radio navigation technique that determines 3D attitude and positioning via FLAOA / time of arrival (TOA) integration. According to the order of determining attitude and positioning, two integration techniques were proposed. To analyze the performance of the proposed technique, MATLAB-based simulations were used to verify the performance. The simulation results showed that the first proposed method, TOA-FLAOA integrated technique, showed about 0.15 m of positioning error, and $2-3^{\circ}$ of attitude error performances regardless of the positioning space size whereas the second method, differenced FLAOA-TOA integrated technique, revealed a problem that a positioning error became larger as the size of the positioning space became larger.

A Study on the Satellite Orbit Design for KPS Requirements

  • Shin, Miri;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.215-223
    • /
    • 2019
  • This paper analyzes navigation performances of the Korean Positioning System (KPS) constellation with respect to the orbit parameters which fulfills the specification requirements. Specifically, the satellite configuration and navigation requirements of KPS are explained, and the daily mean horizontal dilution of precision (HDOP) and satellite visibility on KPS coverage are analyzed to confirm the adequate orbit parameters. However, due to orbital slot saturation, geostationary-orbit (GEO) satellites may not be allocated in the original orbit as specified in the KPS requirements. Therefore, in a spanned window of 4 degrees from the reference longitude the navigation performance of each GEO satellite orbit is investigated.

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.