• Title/Summary/Keyword: Positioning algorithm

Search Result 819, Processing Time 0.036 seconds

Design of active magnetic bearing system for moving vehicles (이동 차량 탑재용 전자기 베어링 시스템 설계)

  • Kim, Ha-Yong;Sim, Hyun-Sik;Lee, Chong-Won;Kang, Tae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.486-489
    • /
    • 2004
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

  • PDF

Precise Positioning from GPS Carrier Phase Measurement Applying Stochastic Models for Ionospheric Delay (전리층 지연 효과의 통계적 모델을 이용한 반송파 정밀측위)

  • Yang, Hyo-Jin;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.319-325
    • /
    • 2007
  • In case of more than 50km baseline length, the correlation between receivers is reduced. Therefore, there are still some rooms for improvement of its positional accuracy. In this paper, the stochastic modeling of the ionospheric delay is applied and its effects are analyzed. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the medium or long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. The ionospheric delay is stochastically modeled by well-known 1st order Gauss-Markov process. And the correlation time and variation of 1st order Gauss-Markov process are calculated. This paper gives analyzed results of developed algorithm compared with commercial software and Bernese.

A Study on Estimating Smartphone Camera Position (스마트폰 카메라의 이동 위치 추정 기술 연구)

  • Oh, Jongtaek;Yoon, Sojung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.99-104
    • /
    • 2021
  • The technology of estimating a movement trajectory using a monocular camera such as a smartphone and composing a surrounding 3D image is key not only in indoor positioning but also in the metaverse service. The most important thing in this technique is to estimate the coordinates of the moving camera center. In this paper, a new algorithm for geometrically estimating the moving distance is proposed. The coordinates of the 3D object point are obtained from the first and second photos, and the movement distance vector is obtained using the matching feature points of the first and third photos. Then, while moving the coordinates of the origin of the third camera, a position where the 3D object point and the feature point of the third picture coincide is obtained. Its possibility and accuracy were verified by applying it to actual continuous image data.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

An Ultrasonic Wave Encoder and Decoder for Indoor Positioning of Mobile Marketing System

  • Kim, Young-Mo;Jang, Se-Young;Park, Byeong-Chan;Bang, Kyung-Sik;Kim, Seok-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.93-100
    • /
    • 2019
  • In this paper, we propose an intelligent marketing service system that can provide custom advertisements and events to both businesses and customers by identifying the location and contents using the ultrasonic signals and feature information in voice signals. We also develop the encoding and decoding algorithm of ultrasonic signals for this system and analyze the performance evaluation results. With the development of the hyper-connected society, the on-line marketing has been activated and is growing in size. Existing store marketing applications have disadvantages that customers have to find out events or promotional materials that the headquarters or stores throughusing the corresponding applications whenever they visit them. To solve these problems, there are attempts to create intelligent marketing tools using GPS technology and voice recognition technology. However, this approach has difficulties in technology development due to accuracy of location and speed of comparison and retrieval of voice recognition technology, and marketing services for customer relation are also much simplified.

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.

A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model (한국형모델의 항공기 관측 온도의 정적 편차 보정 연구)

  • Choi, Dayoung;Ha, Ji-Hyun;Hwang, Yoon-Jeong;Kang, Jeon-ho;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments (GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘)

  • Kim, Jiyeon;Song, Moogeun;Kim, Jaehoon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.

Augmented Reality Framework for Data Visualization Based on Object Detection and Digital Twins

  • Pham, Hung;Nguyen, Linh;Huynh, Nhut;Lee, Yong-Ju;Park, Man-Woo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1138-1145
    • /
    • 2022
  • While pursuing digitalization and paperless projects, the construction industry needs to settle on how to make the most of digitized data and information. On-site workers, who currently rely on paper documents to check and review design and construction plans, will need alternative ways to efficiently access the information without using any paper. Augmented Reality is a potential solution where the information customized to a user is aligned with the physical world. This paper proposes the Augmented Reality framework to deliver the information on on-site resources (e.g., workers and equipment) using head-mounted devices. The proposed framework was developed by interoperating Augmented Reality-supported devices and a digital twin platform in which all information related to ongoing tasks is accumulated in real-time. On-site resources appearing in the user's field of view are automatically detected by an object detection algorithm and then assigned to the corresponding information by matching the data in the digital twin platform. Preliminary experiments show the feasibility of the proposed framework. Worker detection results can be visualized on HoloLens 2 in near real-time, and the matching process obtained the accuracy greater than 88%.

  • PDF