• Title/Summary/Keyword: Positioning algorithm

Search Result 819, Processing Time 0.029 seconds

Modified UKF Considering Real-Time Implementation of the Multi-Rate INS/GPS Integrated Navigation System (다중속도 INS/GPS 결합항법시스템의 실시간 구현을 고려한 수정된 UKF)

  • Cho, Seong Yun;Enkhtur, Munkhzul;Kim, Kyong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • UKF (Unscented Kalman Filter) has been used in the nonlinear systems without initial accurate state estimates instead of EKF (Extended Kalman Filter) of the last decade because the UKF has robustness to the large initial estimation error. In the multirate integrated system such as INS (Inertial Navigation System)/GPS (Global Positioning System) integrated navigation system, however, it is difficult to implement the UKF based navigation algorithm in the mid-grade micro-processor due to the large computational burden. To overcome this problem, this paper proposes a MUKF (Modified UKF) that has a reduced computation burden using the basic idea that the change of the provability distribution for the state variables between measurement updates is small in the multi-rate INS/GPS integrated navigation filter. The performance of the proposed MUKF is verified by numerical simulations.

Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters (전동 스쿠터를 위한 DGPS 기반의 위치 추정 및 반 자율 주행 시스템 개발)

  • Song, Ui-Kyu;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.674-684
    • /
    • 2011
  • More and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.

A miniaturized attitude estimation system for a gesture-based input device with fuzzy logic approach

  • Wook Chang;Jing Yang;Park, Eun-Seok;Bang, Won-Chul;Kang, Kyoung-Ho;Cho, Sung-Jung;Kim, Dong-Yoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.616-619
    • /
    • 2003
  • In this paper, we develop an input device equipped with accelerometers and gyroscopes. The installed sensors measure the inertial measurements i.e., accelerations and angular rates produced by the movement of the system when a user is writing on the plane surface or in the three dimensional space. The gyroscope measurement are integrated once to give the attitude of the system and consequently used to remove the gravity included in the acceleration measurements. The compensated accelerations bin doubly integrated to yield the position of the system. Due to the integration processes involved in recovering the users'motions, the accuracy of the position estimation significantly deteriorates with time. Among various error sources of the system incorrect estimation of attitude causes the largest portion of the positioning error since the gravity is not fully cancelled. In order to solve this problem, we propose a Kalman filler-based attitude estimation algorithm which fuses measurement data from accelerometers and gyroscopes by fuzzy logic approach. In addition, the online calibration of the gyroscope biases are performed in parallel with the attitude estimation to give more accurate attitude estimation. The effectiveness and the feasibility of the presented system is demonstrated through computer simulations and actual experiments.

  • PDF

Autonomous Flight Experiment of a Foldable Quadcopter with Airdrop Launching Function (고공 비행개시가 가능한 접이식 쿼더콥터 자율비행 실험)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • The experimental results are presented of an autonomous flight algorithm of a foldable quadcopter with airdrop launching functions. A foldable wing structure enabled the quadcopter to be inserted into a rocket container with limited space. The foldable quadcopter was then separated from the rocket in the air. The flight pattern was tracked using a global positioning system (GPS) with various sensors, including an inertial measurement unit (IMU) module until a designated target position was reached. Extensive field tests were conducted through an international rocket competition, ARLISS 2017, which was held in Black Rock Desert, Nevada, USA. The flight trajectory record of the experiments is stored in electrically erasable programmable read-only memory (EEPROM) embedded in the main control unit. The flight record confirmed that the quadcopter successfully separated from the rocket, executed flight toward the target for a certain length of time, and stably landed on the ground.

Pseudolite Antenna Calibration Algorithm using a Multi-Antenna Receiver

  • Kim, Chong-Won;Jeon, Sang-Hoon;Kim, Ghang-Ho;Kee, Chang-Don;Lee, Taik-Jin;So, Hyoung-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.250-259
    • /
    • 2012
  • The need for position information in indoor environments has been growing lately. Several indoor navigation systems have been studied. Among them, pseudolite-based indoor positioning systems are one of the best systems to obtain precise position measurements. However, the installation of such systems is very difficult because the calibration of pseudolite antenna position is complicated. For precise calibration, the use of carrier phase measurements is necessary, and whenever carrier phase measurements are considered, problems with cycle ambiguity appear. In this paper, a new approach to calibrate the positions of pseudolite antennas is proposed. By using a multi-antenna, the ambiguity can be eliminated, epoch by epoch, for every single carrier phase measurement. Moreover, the number of calibration points can be reduced down to 3 by use of measurements collected at unknown positions. Using the proposed methods, the process of the collection of carrier phase measurements becomes considerably simple and convenient. Simulation results are presented to verify the proposed algorithms.

A study on the optimal control of Long Stroke Fast Tool Servo Systems (장거리 구동용 FTS 의 최적 제어에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.818-821
    • /
    • 2004
  • With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.

  • PDF

Efficient License Plate Recognition Method for Inclined Plates (기울어진 번호판을 포함한 효율적인 번호판인식)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.833-838
    • /
    • 2003
  • This paper presents novel methods of recognizing license plates of passing vehicles outdo(n. In particular, the proposed method is much robust for inclined plates caused by the changes of camera placement. To acquire fine images of quickly passing vehicles under a wide range of illumination conditions, we developed a sensing system having superb characteristics. We expanded the dynamic range and eliminated the blurring of images of fast moving vehicles by synthesizing a pair of synchronized images with different intensities. furthermore, to extend the flexibility of the positioning of the TV camera, we propose a recognition algorithm that can be applied to inclined plates. The performance of the integrated system was investigated on real images of vehicles captured under various illumination conditions. The recognition rates of over 99% (conventional plates) and over 97% (highly inclined plates) shows that the developed system is effective for license plate recognition.

A System to Recognize Position of Moving Vehicle based on Images (영상을 이용한 차량의 주행 위치 측정 시스템)

  • Kim, Jin-Deog;Moon, Hye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2619-2625
    • /
    • 2011
  • The GPS technique widely used recently in car navigation system has two problems that are unavailability in urban canyons and inherent positional error rate. The one has been studied and solved in many literatures. However, the other still leads to incorrect locational information in some area, especially parallel roads. This paper proposes and implements a system to recognize lane of moving vehicle based on images obtained from in-vehicle networks or other devices. The proposed system utilizes a real-time image matching algorithm which determines the direction of moving vehicle in parallel section of road. It also employs a method for accuracy improvement. The results obtained from experimental test on real-time navigation show that the proposed systems works well and the accuracy increases.

Availability Assessment of GPS Augmentation System Using QZSS at Urban Environment of seoul (서울 도심지에서의 QZSS를 이용한 GPS 확장시스템의 가용도 평가)

  • Yoo, Kyung-Ho;Sung, Sang-Kyung;Kang, Tae-Sam;Lee, Young-Jae;Lee, Eun-Sung;Lee, Sang-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.761-766
    • /
    • 2008
  • This paper analyzes the availability and Dilution Of Precision (DOP) of GPS, widely used in positioning, with and without augmentation using QZSS (Quasi-Zenith Satellite System). Orbit simulator for QZSS is developed using Kepler‘s orbital parameters. Also 3D modeling technique based on three-Dimensional GIS digital map and satellite tracking algorithm for visible satellite simulation system are discussed. Performance improvement of the availability and DOP were achieved by combining GPS with QZSS at urban environment of Seoul.

The advanced Algorithm of Ambiguity Function Method far Realtime Precise GPS Positioning (실시간 정밀측위를 위한 AFM 알고리즘의 성능개선에 관한 연구)

  • 김용일;김동현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.167-179
    • /
    • 1996
  • The AFM (Ambiguity Function Method) is insensitive to the integer ambiguity and the presence of cycle slips in the carrier phase observations. But there are two significant problems with using the AM to determine GPS base-lines. The first problem is the long computation time required to determine the optim position. The second problem is that there may be sever maxima points that the AFM gorithm must discriminate between within the search volume in order to identify the optim position. A new gorithm which enables the AFM to be applied to the OTF (On-the-fly) environments by significantly shortening the computation time is proposed in this paper. In addition to it, sever statistic procedures which verify whether the optim position is true or not are proposed.

  • PDF