• Title/Summary/Keyword: Positioning algorithm

Search Result 819, Processing Time 0.026 seconds

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.

Indoor Path Recognition Based on Wi-Fi Fingerprints

  • Donggyu Lee;Jaehyun Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2023
  • The existing indoor localization method using Wi-Fi fingerprinting has a high collection cost and relatively low accuracy, thus requiring integrated correction of convergence with other technologies. This paper proposes a new method that significantly reduces collection costs compared to existing methods using Wi-Fi fingerprinting. Furthermore, it does not require labeling of data at collection and can estimate pedestrian travel paths even in large indoor spaces. The proposed pedestrian movement path estimation process is as follows. Data collection is accomplished by setting up a feature area near an indoor space intersection, moving through the set feature areas, and then collecting data without labels. The collected data are processed using Kernel Linear Discriminant Analysis (KLDA) and the valley point of the Euclidean distance value between two data is obtained within the feature space of the data. We build learning data by labeling data corresponding to valley points and some nearby data by feature area numbers, and labeling data between valley points and other valley points as path data between each corresponding feature area. Finally, for testing, data are collected randomly through indoor space, KLDA is applied as previous data to build test data, the K-Nearest Neighbor (K-NN) algorithm is applied, and the path of movement of test data is estimated by applying a correction algorithm to estimate only routes that can be reached from the most recently estimated location. The estimation results verified the accuracy by comparing the true paths in indoor space with those estimated by the proposed method and achieved approximately 90.8% and 81.4% accuracy in two experimental spaces, respectively.

Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter (듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발)

  • Seung, Ji-Hoon;Lee, Deok-Jin;Ryu, Ji-Hyoung;Chong, Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.

UAV Auto Pilot System Development with GPS & Infrared Heat sensor (GPS와 적외선 열 센서를 이용한 무인항공기 자동비행 시스템 개발)

  • Choi, Jin-Won;Moon, Jung-Ho;Park, Wook-Je;Chang, Jae-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • In this paper, we developed the algorithm to control longitudinal and lateral motion of UAV(Unmanned Aerial Vehicle) with Infrared heat sensors and GPS(Global Positioning System) receiver. UAV was controlled to be flown horizontally and also turned coordinately maintaining the constant altitude. Accomplishing the flight test of UAV sevral times, we were able to develope low price controller to control bank angle for lateral motion, and also pitch angle and altitude for longitudinal motion simultaneously.

  • PDF

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

Comparison of Numerical Orbit Integration between Runge-Kutta and Adams-Bashforth-Moulton using GLObal NAvigation Satellite System Broadcast Ephemeris

  • Son, Eunseong;Lim, Deok Won;Ahn, Jongsun;Shin, Miri;Chun, Sebum
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.201-208
    • /
    • 2019
  • Numerical integration is necessary for satellite orbit determination and its prediction. The numerical integration algorithm can be divided into single-step and multi-step method. There are lots of single-step and multi-step methods. However, the Runge-Kutta method in single-step and the Adams method in multi-step are generally used in global navigation satellite system (GNSS) satellite orbit. In this study, 4th and 8th order Runge-Kutta methods and various order of Adams-Bashforth-Moulton methods were used for GLObal NAvigation Satellite System (GLONASS) orbit integration using its broadcast ephemeris and these methods were compared with international GNSS service (IGS) final products for 7days. As a result, the RMSE of Runge-Kutta methods were 3.13m and 4th and 8th order Runge-Kutta results were very close and also 3rd to 9th order Adams-Bashforth-Moulton results. About result of computation time, this study showed that 4th order Runge-Kutta was the fastest. However, in case of 8th order Runge-Kutta, it was faster than 14th order Adams-Bashforth-Moulton but slower than 13th order Adams-Bashforth-Moulton in this study.

Kalman Filter-Based Ensemble Timescale with 3- Hydrogen Masers

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A Kalman filter algorithm is used for the generation of an ensemble timescale with three hydrogen masers maintained in KRISS. Allan deviation curves of three pairs of clocks were obtained by a three-cornered hat method and were used as reference curves for determination of parameters of the Kalman filter-based timescale. The ensemble timescale equation of a 3-clock system was established, and the clocks' phases estimated by the Kalman filter were used as the prediction time of each clock in the equation. The weight of each clock was determined inversely proportional to the Allan variance calculated with the clocks' phases. The Allan deviation of the weighted mean was 1.2×10-16 at the averaging time of 57,600 s. However when we made fine adjustments of the clocks' weight, the minimum Allan deviation of 2×10-17 was obtained. To find out the reason of the great improvement in the frequency stability, additional researches are in progress theoretically and experimentally.

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

Wifi Fingerprint Calibration Using Semi-Supervised Self Organizing Map (반지도식 자기조직화지도를 이용한 wifi fingerprint 보정 방법)

  • Thai, Quang Tung;Chung, Ki-Sook;Keum, Changsup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.536-544
    • /
    • 2017
  • Wireless RSSI (Received Signal Strength Indication) fingerprinting is one of the most popular methods for indoor positioning as it provides reasonable accuracy while being able to exploit existing wireless infrastructure. However, the process of radio map construction (aka fingerprint calibration) is laborious and time consuming as precise physical coordinates and wireless signals have to be measured at multiple locations of target environment. This paper proposes a method to build the map from a combination of RSSIs without location information collected in a crowdsourcing fashion, and a handful of labeled RSSIs using a semi-supervised self organizing map learning algorithm. Experiment on simulated data shows promising results as the method is able to recover the full map effectively with only 1% RSSI samples from the fingerprint database.

Stable Zero-Velocity Detection Method Regardless of Walking Speed for Foot-Mounted PDR

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2020
  • In Integration Approach (IA)-based Pedestrian Dead Reckoning (PDR), it is important to detect the exact zero-velocity of the foot with an Inertial Measurement Unit (IMU). By detecting zero-velocity during the stance phase of the foot touching the ground and executing Zero-velocity UPdaTe (ZUPT) at the exact time, stable navigation information can be provided by the PDR. When the pace is fast, however, it is not easy to accurately detect the zero-velocity because of the small stance phase interval and the large signal variance of the corresponding interval. Incorrect zero-velcity detection greatly causes navigation errors of IA-based PDR. In this paper, we propose a method to detect the zero-velocity stably even at high speed by novel buffering of IMU's output data and signal processing of the buffer. And we design a PDR based on this. By analyzing the performance of the proposed Zero-Velocity Detection (ZVD) algorithm and ZVD-based PDR through experiemnts, we confirm that the proposed method can provide accurate navigation information of pedestrians such as firefighters in the indoor space.