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1. INTRODUCTION

A satellite navigation system consists of ground, space, and 

user segments. All satellite navigation systems have the same 

system configuration. The ground segment is then composed 

of elements required for monitoring and control for overall 

system operation. The ground segment performs the 

following functions: satellite status monitoring, maintenance 

plan establishment for system availability and minimization 

of performance degradation, satellite ephemeris and clock 
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Numerical integration is necessary for satellite orbit determination and its prediction. The numerical integration algorithm can 

be divided into single-step and multi-step method. There are lots of single-step and multi-step methods. However, the Runge-
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satellite orbit. In this study, 4th and 8th order Runge-Kutta methods and various order of Adams-Bashforth-Moulton methods 

were used for GLObal NAvigation Satellite System (GLONASS) orbit integration using its broadcast ephemeris and these 

methods were compared with international GNSS service (IGS) final products for 7days. As a result, the RMSE of Runge-Kutta 

methods were 3.13m and 4th and 8th order Runge-Kutta results were very close and also 3rd to 9th order Adams-Bashforth-

Moulton results. About result of computation time, this study showed that 4th order Runge-Kutta was the fastest. However, 

in case of 8th order Runge-Kutta, it was faster than 14th order Adams-Bashforth-Moulton but slower than 13th order Adams-

Bashforth-Moulton in this study.
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generation. Each system has a different number of facilities to 

perform these functions. 

The ground segment utilizes system information such 

as satellite orbit status and maintenance plan to predict 

the satellite orbit and generates navigation message and 

transfers the message to the satellite, thereby making users 

to receive up-to-date information in real time. To predict the 

satellite orbit, a numerical integration algorithm is needed, 

by which satellite acceleration is predicted and the orbit can 

be predicted by applying the predicted acceleration to the 

velocity and position at the previous time.

In relation to the satellite orbit determination, Whalley 

(1990) developed a satellite orbit determination algorithm, 

compared the baseline analysis performance using global 

positioning system (GPS) broadcast ephemeris and precise 

ephemeris, and employed a 4th order Runge-Kutta and 

9th order Adams predictor-corrector algorithm for the 

satellite orbit determination. In addition, Hein et al. (1997) 

employed the 8th order Runge-Kutta and 12th order 
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Adams-Cowell algorithm for inclined geosynchronous orbit 

(IGSO) simulations of Europe regions. Su (2000) performed 

simulations using the 8th order Runge-Kutta and 9th 

order Adams-Cowell algorithm to analyze the strengths 

and drawbacks of geostationary earth orbit (GEO), ISGO, 

and medium earth orbit (MEO) determination. Bae (2009) 

modeled geopotential, third body, and solar radiation 

pressure for the acceleration of GPS satellites to analyze GPS 

satellite precise orbit determination and error characteristics 

and compared the results with the precise ephemeris 

provided by the international GNSS service (IGS), in which 

the 12th order Adams-Bashforth-Moulton algorithm was 

employed for acceleration integration.

In relation to the multi-step integration algorithm 

coefficient, Maury & Segal (1969) proposed various numerical 

integration algorithm coefficients up to the 16th order 

including Adams for round-off error of the algorithm and 

improvements on speed and accuracy, and Kirkpatrick (1976) 

proposed the Adams-Bashforth-Moulton coefficient up to the 

20th order. However, the study explained that a higher order 

did not necessarily guarantee higher accuracy. Maury & Segal 

(1969) and Kirkpatrick (1976) denoted the coefficients of all 

orders as a number in their literature, whereas Seidu (2011) 

provided an equation by which Adams-Bashforth-Moulton 

coefficients could be calculated thereby being able to easily 

apply higher order coefficients.

In relation to the comparison between numerical 

integration algorithms, Fathoni & Wuryandari (2015) applied 

the calculation algorithms of acceleration, velocity, and 

position to Euler, Heun, 4th order Runge-Kutta, and 3rd 

order Adams-Bashforth-Moulton using gravity force, spring 

damper force, and aerodynamic force. Their calculation using 

C++ took about 0.055 seconds and the fastest computation 

speed was Euler followed by Heun, 4th order Runge-Kutta, 

and 3rd order Adams-Bashforth-Moulton.

Bate et al. (1971) and Xu (2008) reported that Runge-

Kutta and Adams algorithms were typically used in 

numerical orbit integration and multi-step algorithm 

was faster than single-step algorithm, but the study by 

Fathoni & Wuryandari (2015) reported a different result. 

In addition, most previous studies applied numerical 

integration algorithms to GPS as a fixed order. Thus, the 

present study implemented various orders of Runge-Kutta 

and Adams-Bashforth-Moulton algorithms, and compared 

the accuracy and calculation time between numerical 

integration algorithms by applying the algorithms to 

GLObal NAvigation Satellite System (GLONASS) broadcast 

ephemeris.

2. GLONASS EPHEMERIS

The GLONASS broadcast ephemeris provides satellite 

position and velocity and perturbing accelerations due to the 

sun and the moon, by which a satellite position at a preferred 

time can be calculated through numerical integration 

(GLONASS ICD 2008). The calculation method of GLONASS 

satellite position has three equations, and the Runge-

Kutta algorithm (GLONASS ICD 2016) can be used for the 

calculation. Table 1 presents the numerical integration errors 

of three satellite position calculation methods provided in 

GLONASS ICD (2016).

As presented in Table 1, the simplified and long-term 

methods have the same error except for four-hour integration 

interval. Since GLONASS broadcast ephemeris is given 

at every 30 min and integrated in every 15 min from the 

reference time of ephemeris in general, this study employed 

a simplified method. Eq. (1) presents a simplified equation to 

calculate GLONASS satellite acceleration.

As presented in Table 1, the simplified and long-term methods have the same error except for four-
hour integration interval. Since GLONASS broadcast ephemeris is given at every 30 min and integrated 
in every 15 min from the reference time of ephemeris in general, this study employed a simplified method. 
Eq. (1) presents a simplified equation to calculate GLONASS satellite acceleration. 
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(1) 

Here, 𝐺𝐺𝐺𝐺 is the geocentric gravitational constant, which is (3986  441 8    8)  1 6 3  2,   refers 
to the distance between Earth center and satellite, x y z refer to the satellite position, 𝐽𝐽20 refers to the 
second degree zonal coefficient of normal potential, which is 1 82625 75  1 ;9, 𝑎𝑎𝑒𝑒  refers to semi-
major axis of the Parametry Zemli 1900 (PZ-90) Earth’s ellipsoid, which is 6378136 m, 𝜔𝜔𝐸𝐸 refers to the 
mean angular velocity of the Earth relative to the vernal equinox, which is 7 2921151467  1 ;5      , 
𝑉𝑉𝑥𝑥  𝑉𝑉𝑦𝑦 refer to the satellite velocity, and �̈�𝑥 �̈�𝑦 �̈�𝑧 refer to the perturbing accelerations of the sun and the 
moon provided by the broadcast ephemeris (GLONASS ICD 2008, 2016). 
 
3. NUMERICAL INTEGRATION ALGORITHM 
 
3.1 Runge-Kutta Method 

 
Runge-Kutta is a typical single-step numerical integration method, by which orbit integration can be 

done using a single initial value. Runge-Kutta is relatively simple and easy to be implemented, and an 
integration step-size can be easily changed. However, it is difficult to find an appropriate integration step-
size because there is no simple way to determine the truncation error (Bate et al. 1971). 

Xu (2008) derived an equation through assumptions because it could not have a single solution as 
the number of unknown values was thirteen and the number of equations was seven in the expansion of 
the 4th order Runge-Kutta equation using the Taylor series. Accordingly, it was verified that despite of 
the same 4th order Runge-Kutta algorithm, it was different from the algorithm proposed by Bate et al. 
(1971). In this study, the 4th order Runge-Kutta algorithm proposed by Bate et al. (1971) was used, which 
is presented in Eq. (2). Some of the algorithm was modified in Eq. (2) to explain the equation 
conveniently according to this study. 
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                                                             𝐾𝐾3 = 𝐹𝐹(𝑃𝑃𝐾𝐾2  𝑉𝑉𝐾𝐾2  𝑎𝑎3𝑖𝑖𝑟𝑟) 
                                                             𝐾𝐾4 = 𝐹𝐹(𝑃𝑃𝐾𝐾3  𝑉𝑉𝐾𝐾3  𝑎𝑎3𝑖𝑖𝑟𝑟) 
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Here, 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 refers to the integrated acceleration value,   refers to Eq. (1), 𝑃𝑃0 𝑉𝑉0 refer to the 
initial position and velocity used in the integration, and  𝑎𝑎3𝑖𝑖𝑟𝑟  refers to the perturbing 
accelerations due to the sun and the moon. In addition, 𝑃𝑃𝐾𝐾  𝑉𝑉𝐾𝐾  refer to the position and velocity 

 (1)

Here, GM is the geocentric gravitational constant, which 

is (398600441.8 ± 0.8) × 106m3/s2, r refers to the distance 

between Earth center and satellite, x,y,z refer to the satellite 

position, J2
0 refers to the second degree zonal coefficient 

of normal potential, which is 1082625.75 × 10-9, ae refers 

to semi-major axis of the Parametry Zemli 1900 (PZ-90) 

Earth’s ellipsoid, which is 6378136 m, ωE refers to the mean 

angular velocity of the Earth relative to the vernal equinox, 

which is 7.2921151467 × 10-5 rad/s, Vx, Vy refer to the satellite 

velocity, and ẍ, ÿ, z ̈  refer to the perturbing accelerations of 

the sun and the moon provided by the broadcast ephemeris 

(GLONASS ICD 2008, 2016).

Table 1. Position prediction errors at various intervals (m) (GLONASS ICD 
2016).

Algorithm example
Integration interval

5 min 10 min 15 min 4 h

Precise
Simplified
Long-term

0.13
0.03-0.42
0.03-0.42

0.18
0.04-0.56
0.04-0.56

0.25
0.05-0.77
0.05-0.77

>30
>100

0.25-1
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3. NUMERICAL INTEGRATION ALGORITHM

3.1 Runge-Kutta Method

Runge-Kutta is a typical single-step numerical integration 

method, by which orbit integration can be done using a 

single initial value. Runge-Kutta is relatively simple and 

easy to be implemented, and an integration step-size can be 

easily changed. However, it is difficult to find an appropriate 

integration step-size because there is no simple way to 

determine the truncation error (Bate et al. 1971).

Xu (2008) derived an equation through assumptions 

because it could not have a single solution as the number of 

unknown values was thirteen and the number of equations 

was seven in the expansion of the 4th order Runge-Kutta 

equation using the Taylor series. Accordingly, it was verified 

that despite of the same 4th order Runge-Kutta algorithm, 

it was different from the algorithm proposed by Bate et al. 

(1971). In this study, the 4th order Runge-Kutta algorithm 

proposed by Bate et al. (1971) was used, which is presented 

in Eq. (2). Some of the algorithm was modified in Eq. (2) to 

explain the equation conveniently according to this study.

 

As presented in Table 1, the simplified and long-term methods have the same error except for four-
hour integration interval. Since GLONASS broadcast ephemeris is given at every 30 min and integrated 
in every 15 min from the reference time of ephemeris in general, this study employed a simplified method. 
Eq. (1) presents a simplified equation to calculate GLONASS satellite acceleration. 
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conveniently according to this study. 
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Xu (2008) derived an equation through assumptions because it could not have a single solution as 
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Here, aintegration refers to the integrated acceleration value, F 

refers to Eq. (1), P0, V0 refer to the initial position and velocity 

used in the integration, and a3rd refers to the perturbing 

accelerations due to the sun and the moon. In addition, PKn
, 

VKn
 refer to the position and velocity values calculated using 

Kn, which follow the position, velocity, and acceleration 

equations as presented in Eq. (3). 

values calculated using 𝐾𝐾𝑛𝑛, which follow the position, velocity, and acceleration equations as 
presented in Eq. (3). 
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Here,   refers to the integration step-size, which is a second unit of time in this study, and α   are 
presented in Table 2. 

 -integrated position and velocity can be calculated using Eq. (3), 𝐾𝐾𝑛𝑛 refers to 𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛, 
and α   refer to 6 and 1/6, respectively. 

The 8th order Runge-Kutta was the same equation proposed by Su (2000) and Xu (2008), b
ut it was expressed in different manner. The equation proposed by Su (2000) is presented in Eq. 
(4), and some of the equation was omitted. 
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3.2 Adams-Bashforth-Moulton Method 
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calculation speed is faster than single-step method (Bate et al. 1971, Xu 2008). 

According to Wikipedia (2019), the first order Adams-Bashforth is called Euler method, and the 1st-
order and 2nd-order Adams-Moulton algorithms are called backward Euler method and trapezoidal rule, 
respectively. Thus, Adams-Bashforth-Moulton can be used from the 3rd order. Three initial values are 
needed to employ the 3rd order Adams-Bashforth-Moulton algorithm, which is calculated using Runge-
Kutta in general (Bate et al. 1971, Xu 2008). 
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and h-integrated position and velocity are: in Eq. (3), Kn is 
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Table 2. 4th Runge-Kutta coefficient of Eq. (3).

For α β

K2

K3

K4

1
1
1

1/2
1/2
1

Table 3. 8th Runge-Kutta coefficient of Eq. (3).

For α β
K2

K3

K4

K5

K6

K7

K8

K9

K10

1
4
4
4
36
720
20
480
820

4/27
1/18
1/12
1/8

1/54
1/4320

1/20
1/288
1/820
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order Adams-Moulton algorithms are called backward Euler 

method and trapezoidal rule, respectively. Thus, Adams-

Bashforth-Moulton can be used from the 3rd order. Three 

initial values are needed to employ the 3rd order Adams-

Bashforth-Moulton algorithm, which is calculated using 

Runge-Kutta in general (Bate et al. 1971, Xu 2008).

The predictor algorithm is presented in Eq. (5), in which 

ap refers to the predicted GLONASS acceleration, h refers 

to the integration step-size, which is a second unit of time 

in this study, n refers to the order number, and CB refers to 

the coefficient for integration, and every order has different 

coefficient. ai refers to the previous acceleration value for 

prediction, which requires n values. In addition, ai refers to 

the value calculated through Eq. (1). Note that it is not aintegration 

in Eq. (2) and yn+1 in Eq. (4).
 

The predictor algorithm is presented in Eq. (5), in which 𝑎𝑎𝑝𝑝  refers to the predicted GLONASS 
acceleration,   refers to the integration step-size, which is a second unit of time in this study,   refers to 
the order number, and    refers to the coefficient for integration, and every order has different coefficient. 
𝑎𝑎𝑖𝑖 refers to the previous acceleration value for prediction, which requires   values. In addition, 𝑎𝑎𝑖𝑖 refers 
to the value calculated through Eq. (1). Note that it is not 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in Eq. (2) and 𝑦𝑦𝑖𝑖:1 in Eq. (4). 

 
𝑎𝑎𝑝𝑝 =  ∑   𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖<1                                                         (5) 
 
The corrector algorithm is presented in Eq. (6), in which 𝑎𝑎  refers to the corrected GLONASS 

acceleration and    refers to the coefficient for integration, which is different from   . 𝑎𝑎𝑖𝑖 refers to the 
acceleration value for correction, which requires a predicted value using Adams-Bashforth and  − 1 
previous values. 

 
𝑎𝑎 = ℎ∑   𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖<1                                                         (6) 
 
The position and velocity can be calculated by using 𝑎𝑎𝑝𝑝 or 𝑎𝑎  and applying it to Eq. (3), in which 

α = 1  = 1. In addition, the truncation error can be calculated using the difference between 𝑎𝑎𝑝𝑝 and 𝑎𝑎 , 
and the calculation was iterated in this study when the difference of the satellite position is larger than 
1  1 ;6  . The number of iterations in most orders is two in maximum. 

 
4. COMPARISION RESULTS 

 
In this section, GLONASS satellite positions were calculated using the implemented algorithm, and the 

performance was compared with the IGS final products. Kouba (2015) reported that the satellite 
coordinates were provided refer to the center of mass in the IGS products but the broadcast ephemeris like 
the GPS was provided refer to the phase center, which required correction. However, according to 
GLONASS ICD (2016), GLONASS broadcast ephemeris is provided refer to the center of mass. Thus, 
the coordinate correction process can be omitted. Because the IGS precise ephemeris provided the 
satellite position in every 15 min based on global positioning system time (GPST), it was re-calculated in 
every second using the 9th order Lagrange interpolation of GLONASS time. The analysis period was 
from 2019 day of year (DOY) 195 to 201. Since Nos. 6 and 25 satellites were not present in the products, 
and No. 26’s health flag was 1 (unhealthy) in the broadcast ephemeris, they were excluded from the 
analysis. 

 
4.1 4th and 8th Order Runge-Kutta Method 

 
The GLONASS broadcast ephemeris provides the parameter in every 30 min and performs forward 

and backward computations of 15 min as shown in Fig. 1. Here, there will be an overlapped portion as 
shown in 30 min in Fig. 1. 

The 30-min portion in Fig. 1 was calculated using the forward and backward manner, and their 
accuracy was compared. To do this, the integration was performed using the 4th and 8th order Runge-
Kutta. There are two methods in the integration using Runge-Kutta as shown in Fig. 2. In relation to this, 
Habrich (1999) reported that significant errors occurred as the integration step-size was larger, but the 
difference between one and ten seconds was similar at a level of several tens of centimeters. Thus, this 
study employed one and five seconds step-size that was used in CASE 1 of Fig. 2 method to perform the 
integration and compared the results. 

Table 4 presents the comparison results with the IGS final products by the root mean square error 
(RMSE). The maximum, minimum, mean, and standard deviation of 23 satellites used in the analysis are 
presented. Although 48 ephemeris were provided daily as the comparison data for one week, DOY 195 
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 (6)

The position and velocity can be calculated by using ap or 

ac and applying it to Eq. (3), in which α=1, β=1. In addition, 

the truncation error can be calculated using the difference 

between ap and ac, and the calculation was iterated in this 

study when the difference of the satellite position is larger 

than 1×10-6 m. The number of iterations in most orders is two 

in maximum.

4. COMPARISION RESULTS

In this section, GLONASS satellite positions were 

calculated using the implemented algorithm, and the 

performance was compared with the IGS final products. 

Kouba (2015) reported that the satellite coordinates were 

provided refer to the center of mass in the IGS products but 

the broadcast ephemeris like the GPS was provided refer 

to the phase center, which required correction. However, 

according to GLONASS ICD (2016), GLONASS broadcast 

ephemeris is provided refer to the center of mass. Thus, 

the coordinate correction process can be omitted. Because 

the IGS precise ephemeris provided the satellite position 

in every 15 min based on global positioning system time 

(GPST), it was re-calculated in every second using the 9th 

order Lagrange interpolation of GLONASS time. The analysis 

period was from 2019 day of year (DOY) 195 to 201. Since 

Nos. 6 and 25 satellites were not present in the products, 

and No. 26’s health flag was 1 (unhealthy) in the broadcast 

ephemeris, they were excluded from the analysis.

4.1 4th and 8th Order Runge-Kutta Method

The GLONASS broadcast ephemeris provides the parameter 

in every 30 min and performs forward and backward 

computations of 15 min as shown in Fig. 1. Here, there will be 

an overlapped portion as shown in 30 min in Fig. 1.

The 30-min portion in Fig. 1 was calculated using the 

forward and backward manner, and their accuracy was 

compared. To do this, the integration was performed using 

the 4th and 8th order Runge-Kutta. There are two methods 

in the integration using Runge-Kutta as shown in Fig. 2. 

In relation to this, Habrich (1999) reported that significant 

errors occurred as the integration step-size was larger, but the 

difference between one and ten seconds was similar at a level 

of several tens of centimeters. Thus, this study employed one 

and five seconds step-size that was used in CASE 1 of Fig. 2 

method to perform the integration and compared the results.

Table 4 presents the comparison results with the IGS 

final products by the root mean square error (RMSE). The 

maximum, minimum, mean, and standard deviation of 

Fig. 1. GLONASS broadcast ephemeris integration general scheme.

Fig. 2. Two different integration method of GLONASS broadcast 
ephemeris.

Table 4. Forward and backward calculation RMES result of 4th and 8th 
Runge-Kutta method compared with IGS final product.

4th Runge-Kutta 8th Runge-Kutta
scheme Forward Backward Forward Backward

Step-size 1s 5s 1s 5s 1s 5s 1s 5s
Max (m)
Min (m)
Ave. (m)
Std. (m)

6.51
2.29
3.17
1.06

6.41
2.31
3.17
1.04

6.95
2.41
3.21
1.13

7.07
2.40
3.22
1.14

6.51
2.29
3.17
1.06

6.42
2.33
3.18
1.04

6.95
2.41
3.22
1.13

7.08
2.42
3.24
1.14
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23 satellites used in the analysis are presented. Although 

48 ephemeris were provided daily as the comparison data 

for one week, DOY 195 0:0:0 in the backward and DOY 202 

0:0:0 in the forward were excluded. Thus, 335 ephemeris 

per satellite were used. As presented in Table 4, the forward 

method exhibited slightly better results than that of the 

backward method, and the 4th order results were slightly 

better than those of the 8th order. Excluding the maximum 

value of the forward, the results of one second step-size 

integration were better than those of the five seconds step-

size integration at a level of centimeter.

The weekly RMSE analysis results after integration in every 

second showed that X, Y, Z, and 3D were 1.80 m, 1.79 m, 1.82 

m, and 3.13 m on average, respectively, and no significant 

deviation was found among X, Y, and Z. The results of the 

4th and 8th order Runge-Kutta were different at a level of 

millimeter. In relation to the comparison between broadcast 

and precise ephemeris of GLONASS, Lee (2012) performed 

24-hour analysis in every second and the analysis results 

showed that X, Y, and Z were 5.11 m, 5.09 m, and 4.13 m, 

respectively. In comparison to this study result, the accuracy 

of GLONASS broadcast ephemeris has significantly improved. 

Fig. 3 shows the RMSE results for each satellite of the 8th 

order Runge-Kutta, in which the X-axis and Y-axis represent 

the satellite number and m-unit RMSE, respectively.

4.2 Various Orders of Adams-Bashforth-Moulton Method

By using the calculation equation of Adams-Bashforth-

Moulton coefficient proposed by Seidu (2011), Adams-

Bashforth and Adams-Moulton can calculate up to 81th order 

and 82th order, respectively. In this study, up to the 81th 

order was applied. Fig. 4 shows the 3D RMSE results, which 

are compared with the IGS final products by integrating 

in every second. The 8th order Runge-Kutta was used to 

calculate the initial value, and the initial value was excluded 

in the RMSE calculation.

As shown in Fig. 4, the 3D RMSE was around 3.13 m from 

the 3rd to 9th orders, which was very similar to that of the 

4th and 8th order Runge-Kutta, while the 3D RMSE at the 

10th order was 3.14 m, which was slightly different. The error 

increased gradually from the 10th order, and the 3D RMSE was 
Fig. 3. 8th Runge-Kutta integration RMSE compared with IGS final product 
for 7 days.

Fig. 4. Adams-Bashforth-Moulton integration RMSE compared with IGS final product for 7 days.
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the largest as 11 m at the 13th order. In relation to the error 

increase, the condition number started to increase from the 

11th order when using the computation equation of Adams-

Bashforth-Moulton coefficient proposed by Seidu (2011). The 

condition number increased as the order number increased, 

and the condition number at the 14th order coefficient was 

larger than that of the 13th coefficient. However, the RMSE in 

the 14th order was smaller than that of the 13th order, which 

suggests that additional analysis on other factors are necessary 

in addition to the condition number.

4.3 Computation Time

According to Bate et al. (1971), in general, the single-step 

integration is slower than the multi-step integration. The 4th 

order Runge-Kutta requires at least five times of computation 

processes for integration whereas the 8th order requires 

eleven times. For the 3rd order of Adams-Bashforth-Moulton, 

at least six times of computations are required, and iterations 

may occur depending on truncation error condition and it 

will take time of the previous acceleration data search. Thus, 

it is considered slower than the 4th order Runge-Kutta. To 

compare the computation time of the Runge-Kutta and 

Adams-Bashforth-Moulton algorithms, an integration time 

of one satellite for 30 min was computed, which is shown in 

Fig. 5. MATLAB was used to integrate every second in the 

computation. For Adams-Bashforth-Moulton, initial value 

computation and coefficient computation times were also 

included. Considering the degradation of central processing 

unit utilization rate assigned to MATLAB due to background 

programs running intermittently in the Windows Operating 

Systems, a mean value was used after measuring 10 times. 

The X-axis in Fig. 5 represents the order number of Adams-

Bashforth-Moulton, and the blue and purple lines represent 

the 4th order and 8th order Runge-Kutta, respectively.

As shown in Fig. 5, the computation time of the 4th order 

Runge-Kutta was 43 milliseconds (ms), which was the fastest, 

and the computation time of the 8th order Runge-Kutta was 

166 ms, which was almost three times slower than that of 

the 4th order Runge-Kutta. The computation time of the 3rd 

order Adams-Bashforth-Moulton was 80 ms. These figures 

verified that as the order number increased, the computation 

time increased by 3 ms - 6 ms. However, the computation 

times at the 9th and 11th orders were 28 ms and 17 ms, 

respectively, which exhibited somewhat longer time than 

those of other order numbers. The computation times at 

the 13th and 14th order Adams-Bashforth-Moulton were 

162 ms and 168 ms, respectively, which revealed that the 

computation time of the 8th order Runge-Kutta was slower 

than that of the 13th order Adams-Bashforth-Moulton.

The difference between the 4th and 8th orders of Runge-

Kutta, which was used to calculate the initial value of Adams-

Bashforth-Moulton, was 2 ms on average, which was very 

small, and the computation time at the 68th order was the 

largest as 15 ms.

5. CONCLUSIONS

This study implemented the Runge-Kutta and Adams-

Fig. 5. Computation time of 4th and 8th Runge-Kutta and various order of Adams-Bashforth-Moulton.
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Bashforth-Moulton algorithms, which are the widely used 

numerical integration algorithms in single-step and multi-

step. The algorithms were applied to GLONASS broadcast 

ephemeris, and the results were compared with IGS final 

products. The accuracy of the two algorithms had no 

significant difference as their 7-day RMSE mean was 3.13 m. 

However, the accuracy of Adams-Bashforth-Moulton tended 

to degrade from the 10th order. The computation time of the 

4th order Runge-Kutta was about twice faster than that of 

the 3rd order Adams-Bashforth-Moulton. Bate et al. (1971) 

reported that the single-step was slower than the multi-step 

in general. However, such conclusion was based on the result 

applied to predictor or corrector algorithm only. Accordingly, 

when performing the 2nd order Adams-Bashforth only, its 

computation time was 37 ms, which was faster than that of 

the 4th order Runge-Kutta. The accuracy was poor than that 

of the 4th Runge-Kutta, but the difference was very small only 

at a level of mm. However, an algorithm such as Runge-Kutta 

that calculates an initial value is needed to employ the Adams 

algorithm, and the computation time is similar with 4th order 

Runge-Kutta. Thus, this study verified that using the 4th order 

Runge-Kutta was considered sufficient for GLONASS broadcast 

ephemeris integration. This study completed the verification 

of the algorithm implemented using GLONASS broadcast 

ephemeris. The study results are expected to be utilized in the 

modeling of accelerations due to Earth’s gravitational field, 

celestial gravity, and solar radiation pressure, as performed by 

Bae (2009), and used as a basis algorithm for orbit prediction 

through the integration of GNSS satellites.
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