• Title/Summary/Keyword: Positioning accuracy

Search Result 1,405, Processing Time 0.021 seconds

The Couplings for ball-screw on high precision positioning (고정도 이송을 위한 공기정압커플링에 관한 연구)

  • 황성철;전도현;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.161-166
    • /
    • 2002
  • Recently, researches on precision machining of nato-order, especially in the field of optical components and semi-conductors have been under development very actively. A accuracy of machining and positioning in a critical issue in ultra-precision machining. This paper proposes a new positioning system which can give excellent dynamic characteristics and reduce errors in horizontal, vertical, pitching, and yawing motions. In this paper, we suggest a connecting mechanism (the couplings) to reduce motion errors such as chatter and runout while preserving the positioning accuracy. We verified the good performance in the new connecting systems with various coupling types, which we classified into the fixed type, the spring type, the aeroctatic-nozzle type, and the aeroctatic-porous type according to the way of reducing the chatter and error.

  • PDF

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using DC Servo Motor (DC Servo Motor를 이용한 초정밀 위치결정기구의 컴퓨터 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;윤성운;이규태;곽이구;송인석;한재호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.164-169
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. As such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. Control performance and stability analysis were performed in advance by modeling and designing the controller with Simulink.

  • PDF

Accuracy Analysis of Code-based PPP-RTK Positioning Utilizing K-SSR Correction Messages Outside the Reference Network

  • Yoon, Woong-Jun;Park, Kwan-Dong;Kim, Hye-In;Woo., Seung;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) refers to a technology that combines PPP with network-RTK in which a user does not directly receive observed data from a reference station but receives State-Space Representation (SSR) messages corrected for error components from a central processing station through Networked Transport of RTCM via Internet Protocol (NTRIP) or Digital Multimedia Broadcasting (DMB) for purposes of positioning. SSR messages, which refer to corrections used in PPP-RTK, are generated by a central processing station using real-time observed data collected from reference stations and account for corrections needed due to the ionosphere, troposphere, satellite orbital errors, satellite time offsets, and satellite biases. This study used a type of SSR message provided in South Korea, known as Korea-SSR (K-SSR), to implement a PPP-RTK algorithm based on code-pseudorange measurements and validated its accuracy within the reference station network. In order to validate the accuracy of the implemented algorithm outside of the network, the K-SSR was extrapolated and applied to positioning in reference stations in Changchun, China (CHAN) and Japan (AIRA). This also entailed a quantitative evaluation that measured improvements in accuracy in comparison with point positioning. The results of the study showed that positioning applied with extrapolated K-SSR correction data was more accurate in both AIRA and CHAN than point positioning with improvements of approximately 20~50%.

Analyzing Characteristics of GPS Dual-frequency SPP Techniques by Introducing the L2C Signal

  • Seonghyeon Yun;Hungkyu Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Several experiments were carried out to analyze the impact of the modernized Global Positioning System (GPS) L2C signal on pseudorange-based point positioning. Three dual-frequency positioning algorithms, ionosphere-free linear combination, ionospheric error estimation, and simple integration, were used, and the results were compared with those of Standard Point Positioning (SPP). An analysis was conducted to determine the characteristics of each dual-frequency positioning method, the impact of the magnitude of ionospheric error, and receiver grade. Ionosphere-free and ionospheric error estimation methods can provide improved positioning accuracy relative to SPP because they are able to significantly reduce the ionospheric error. However, this result was possible only when the ionospheric error reduction effect was greater than the disadvantage of these dual-frequency positioning algorithms such as the increment of multipath and noise, impact of uncertainty of unknown parameter estimation. The RMSE of the simple integration algorithm was larger than that of SPP, because of the remaining ionospheric error. Even though the receiver grade was different, similar results were observed.

INTEGRATION OF GPS AND PSEUDOLITE FOR SEAMLESS POSITIONING : Fundamental Verification Experiment and Results

  • Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.77-84
    • /
    • 2002
  • The Global Positioning System, GPS technology has been widely used in positioning and attitude determination. It is well known that the accuracy, availability and reliability of the positioning results are heavily dependent on the number and geometric distribution of tracked GPS satellites. Because of this limitation, in some situations, such as in urban canyons, underground space or inside of buildings, it is really hard to navigate with GPS receiver. Therefore, in order to improve the performance of satellite-based positioning, the integration of GPS with the pseudolite technology has been proposed. With this pseudolite technology, it is expected that seamless positioning service can be provided in wider area without replacing existing GPS receivers. On the other hand, to adopt pseudolites at larger scale, it is necessary to verify how the pseudolites can complement the existing GPS-based positioning. In this paper the authors present the detail of experimental investigations and the results of the fundamental verification for seamless positioning using integration of GPS and pseudolite. This paper shows that the accuracy and efficiency of integrating GPS and pseudolite through the dynamic and static positioning experiment and discuss about the influence on GPS receiver by pseudolite signal. The experimental results indicate that the accuracy of the height component can indeed be significantly improved, to approximately the same level as the horizontal component.

  • PDF

Development of Precise Point Positioning Method Using Global Positioning System Measurements

  • Choi, Byung-Kyu;Back, Jeong-Ho;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Precise point positioning (PPP) is increasingly used in several parts such as monitoring of crustal movement and maintaining an international terrestrial reference frame using global positioning system (GPS) measurements. An accuracy of PPP data processing has been increased due to the use of the more precise satellite orbit/clock products. In this study we developed PPP algorithm that utilizes data collected by a GPS receiver. The measurement error modelling including the tropospheric error and the tidal model in data processing was considered to improve the positioning accuracy. The extended Kalman filter has been also employed to estimate the state parameters such as positioning information and float ambiguities. For the verification, we compared our results to other of International GNSS Service analysis center. As a result, the mean errors of the estimated position on the East-West, North-South and Up-Down direction for the five days were 0.9 cm, 0.32 cm, and 1.14 cm in 95% confidence level.

Improvement of the Positioning Accuracy of a Single Frequency Receiver Using Observables of the Dual GPS Reference Stations (이중 GPS 기준국 관측정보를 이용한 단일주파수 수신기의 측위 정확도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.291-298
    • /
    • 2008
  • With the growth of civil and commercial applications, the Global Navigation Satellite System(GNSS) that provides the positioning, navigation, and timing information affects to our life. In order to meet all the requirements of civilian user, new positioning technology with the accuracy of 10cm level has been applied and the positioning accuracy is getting improved. In this study, dual coverage(DAEJ, SUWN) GPS measurements were applied to improve the positioning accuracy for GPS L1 single frequency users. We processed some GPS data obtained from the distributed test sites in the wide area over Korea Peninsula. As a result, the combined solution output using dual coverage showed more improved positioning accuracy than that of single coverage.

A Comparison of Deep Learning Models for IQ Fingerprint Map Based Indoor Positioning in Ship Environments

  • Yootae Shin;Qianfeng Lin;Jooyoung Son
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1122-1140
    • /
    • 2024
  • The importance of indoor positioning has grown in numerous application areas such as emergency response, logistics, and industrial automation. In ships, indoor positioning is also needed to provide services to passengers on board. Due to the complex structure and dynamic nature of ship environments, conventional positioning techniques have limitations in providing accurate positions. Compared to other indoor positioning technologies, Bluetooth 5.1-based indoor positioning technology is highly suitable for ship environments. Bluetooth 5.1 attains centimeter-level positioning accuracy by collecting In-phase and Quadrature (IQ) samples from wireless signals. However, distorted IQ samples can lead to significant errors in the final estimated position. Therefore, we propose an indoor positioning method for ships that utilizes a Deep Neural Network (DNN) combined with IQ fingerprint maps to overcome the challenges associated with accurate location detection within the ship. The results indicate that the accuracy of our proposed method can reach up to 97.76%.

Sensor Positioning Scheme using Density Probability Models in Non-uniform Wireless Sensor Networks (비 균일 무선 센서 네트워크 환경에서 밀집 확률 모델링을 이용한 센서 위치 인식 기법)

  • Park, Hyuk;Hwang, Dong-Kyo;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • In wireless sensor networks, a positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. The One of the most positioning scheme, called DV-HOP does not consider non-uniform sensor networks that are actual distributed environments. Therefore, the accuracy of the existing positioning scheme is low in non-uniform network environments. Moreover, because it requires many anchor nodes for high accuracy in non-uniform network environments, it is expensive to construct the network. To overcome this problem, we propose a novel sensor positioning scheme using density probability models in non-uniform wireless sensor networks. The proposed scheme consists of the density probability model using the deployment characteristics of sensor nodes and the distance refinement algorithm for high accuracy. By doing so, the proposed scheme ensures the high accuracy of sensor positioning in non-uniform networks. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme improves about 44% accuracy of sensor positioning over the existing scheme on average even in non-uniform sensor networks.