• Title/Summary/Keyword: Positioning Method

Search Result 1,679, Processing Time 0.023 seconds

Kinematic GPS Positioning with Baseline Length Constraint Using the Maximum Possibility Estimation Method

  • Wang, Xinzhou;Xu, Chengquan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.247-250
    • /
    • 2006
  • Based on the possibility theory and the fuzzy set, the Maximum Possibility Estimation method and its applications in kinematic GPS positioning are presented in this paper. Firstly, the principle and the optimal criterion of the Maximum Possibility Estimation method are explained. Secondly, the kinematic GPS positioning model of single epoch single frequency with baseline length constraint is developed. Then, the authors introduce the artificial immune algorithm and use this algorithm to search the global optimum of the Maximum Possibility Estimation model. The results of some examples show that the method is efficient for kinematic GPS positioning.

  • PDF

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

A Study on Pseudolite-augmented Positioning Method for Automatic Docking (자동접안을 위한 의사위성 보강 측위기법에 관한 연구)

  • Park, Sang-Hyun;Cho, Deuk-Jae;Oh, Se-Woong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.839-845
    • /
    • 2006
  • A laser docking system provides a centimeter-level accuracy distance from jetty mounted laser sensors in order to help a vessel to approach to a pier. It is very accurate & useful, whereas there are too many considerable problems. Laser sensors of the laser docking system need to be correctly positioned and installed on a jetty to allow for full range of vessels to be berthed and to consider loading condition and tidal variations. Above all, the laser docking system is expensive and its service coverage is limited. In order to solve these problems, CDGPS positioning method using GPS satellites has been proposed. This paper presents that, through RHDOP simulation, the previous CDGPS positioning method using only GPS satellites is not able to provide the continuous service with centimeter-level positioning accuracy. And this paper proposes a pseudolite-augmented positioning method for vessel docking in order to solve the problem of the continuous service on the previous CDGPS positioning method. In this paper, pseudolite is used to aid in CDGPS positioning. This paper shows that the proposed method can provides the continuous service through comparison analysis of RHDOP simulation results between the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation. Furthermore, it is shown that the proposed positioning method satisfies the positioning performance required for vessel automatic docking at a test bed designed for performance evaluation.

A Study on Error Reduction of Indoor Location Determination using triangulation Method and Least Square Method (삼각측량법과 최소자승법을 활용한 실내 위치 결정의 산포 감소 방안에 관한 연구)

  • Jang, Jung-Hwan;Lee, Doo-Yong;Zhang, Jing-Lun;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.217-224
    • /
    • 2012
  • Location-Based Services(LBS) is a service that provide location information by using communication network or satellite signal. In order to provide LBS precisely and efficiently, we studied how we can reduce the error on location determination of objects such people and things. We focus on using the least square method and triangulation positioning method to improves the accuracy of the existing location determination method. Above two methods is useful if the distance between the AP and the tags can be find. Though there are a variety of ways to find the distance between the AP and tags, least squares and triangulation positioning method are wildely used. In this thesis, positioning method is composed of preprocessing and calculation of location coordinate and detail of methodology in each stage is explained. The distance between tag and AP is adjusted in the preprocessing stage then we utilize least square method and triangulation positioning method to calculate tag coordinate. In order to confirm the performance of suggested method, we developed the test program for location determination with Labview2010. According to test result, triangulation positioning method showed up loss error than least square method by 38% and also error reduction was obtained through adjustment process and filtering process. It is necessary to study how to reduce error by using additional filtering method and sensor addition in the future and also how to improve the accuracy of location determination at the boundary location between indoor and outdoor and mobile tag.

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

Carrier Phase Based Navigation Algorithm Design Using Carrier Phase Statistics in the Weak Signal Environment

  • Park, Sul Gee;Cho, Deuk Jae;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • Due to inaccurate safe navigation estimates, maritime accidents have been occurring consistently. In order to solve this, the precise positioning technology using carrier phase information is used, but due to high buildings near inland waterways or inclination, satellite signals might become weak or blocked for some time. Under this weak signal environment for some time, the GPS raw measurements become less accurate so that it is difficult to search and maintain the integer ambiguity of carrier phase. In this paper, a method to generate code and carrier phase measurements under this environment and maintain resilient navigation is proposed. In the weak signal environment, the position of the receiver is estimated using an inertial sensor, and with this information, the distance between the satellite and the receiver is calculated to generate code measurements using IGS product and model. And, the carrier phase measurements are generated based on the statistics for generating fractional phase. In order to verify the performance of the proposed method, the proposed method was compared for a fixed blocked time. It was confirmed that in case of a weak or blocked satellite signals for 1 to 5 minutes, the proposed method showed more improved results than the inertial navigation only, maintaining stable positioning accuracy within 1 m.

Location Correction Based on Map Information for Indoor Positioning Systems (지도 정보를 반영한 옥내 측위 보정 방안)

  • Yim, Jae-Geol;Shim, Kyu-Bark;Park, Chan-Sik;Jeong, Seung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.300-312
    • /
    • 2009
  • An indoor location-based service cannot be realized unless the indoor positioning problem is solved. However, the cost-effective indoor positioning systems are suffering from their inaccurateness. This paper proposes a map information-based correction method for the indoor positioning systems. Using our Kalman filter with map information-based appropriate parameter values, our method estimates the track of the moving object, then it performs the Frechet Distance-based map matching on the obtained track. After that it applies our real time correction method. In order to verify efficiency of our method, we also provide our test results.

  • PDF

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

Application of Geomagnetic Field-Based Indoor Positioning Technology in the Formwork Stage (거푸집공사 단계에서의 지구자기장 기반 작업자 실내측위기술 적용 방법)

  • Kim, Hyungjun;Lee, Changwoo;Kim, Hyeonmin;Ahn, Heejae;Lee, Changsu;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.213-214
    • /
    • 2023
  • Positioning information of workers is important for safety management at construction sites. Among the various indoor positioning technologies, geomagnetic fields-based technology is more economical and has less error than other technologies. However, there is a problem that the installation and dismantling of materials such as formwork at construction sites can cause degradation in positioning performance. Therefore, in this study, the distortion of the geomagnetic field near euro-form was quantitatively measured and the application method of geomagnetic field-based indoor positioning technology on formwork stage was presented. The results showed that the distortion occurred within 10cm of the wall and column form, but positioning accuracy could be affected up to 60cm from the form due to the characteristic of geomagnetic field-collecting technology. Therefore, applying this technology to the formwork stage requires complementary measures, such as using other positioning techniques up to 60 cm near the formwork, or excluding distorted area when positioning. It is expected that this study can contribute to the efficient safety management of workers by suggesting ways to prevent an increase in positioning error when applying geomagnetic field sequence-based indoor positioning technology during the formwork stage.

  • PDF