• Title/Summary/Keyword: Positional Error

Search Result 150, Processing Time 0.027 seconds

Reconstruction of body contour with digital camera image (Digital Camera의 영상을 이용한 신체 단면도 제작)

  • Kwon, KT;Kim, CM;Kang, TY;Park, CS;Song, HK
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • I. Purpose It is essential to have the correct body contour information for the calculation of dose distribution. The role of CT images in the radiation oncology field has been increased. But there still exists a method to use cast or lead wire for the body contour drawing. This traditional method has drawbacks such as in accurate and time consuming procedure. This study has been designed to overcome this problem. II. Materials and Methods A digital camera is attached to a pole which stands on the opposite side of the gantry. Positional information was acquired from an image of the phantom which is specially designed for this study and located on the isocenter level of the simulator Laser line on the patients skin or on the phantom surface was digitized and reconstructed as the contour. Verification of usefulness this technique has been done with various shape of phantoms and a patients chest III. Results and Conclusions Contours from the traditional method with the cast or lead wire and the digital image method showed good agreement within experimetal error range. This technique showed more efficiente in time and convenience. For irregular shaped contour, like H&N region, special care are needed. The results suggest that more study is needed. To use of the another photogrammatory techinique with two camera system may be better for the actual clinical application

  • PDF

Development of Geocoding and Reverse Geocoding Method Implemented for Street-based Addresses in Korea (우리나라 도로명주소를 활용한 지오코딩 및 역 지오코딩 기법 개발)

  • Seok, Sangmuk;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • In Korea, the address-point matching technique has been used to provide geocoding services. In fact, this technique brings the high positional accuracy. However, the quality of geocoding result can be limited, since it is significantly affected by data quality. Also, it cannot be used for the 3D address geocoding and the reverse geocoding. In order to alleviate issues, the paper has implemeted proposed geocoding methods, based on street-based addresses matching technique developed by US census bureau, for street-based addresses in Korea. Those proposed geocoding methods are illustrated in two ways; (1) street address-matching method, which of being used for not only 2D addresses representing a single building but also 3D addresses representing indoor space or underground building, and (2) reverse geocoding method, whichas converting a location point to a readable address. The result of street-based address geocoding shows 82.63% match rates, while the result of reverse geocoding shows 98.5% match rates within approximately 1.7(m) the average position error. According to the results, we could conclude that the proposed geocoding techniques enable to provide the LBS(Location Based Service). To develop the geocoding methods, the study has perfoermed by ignoring the parsing algorithms for address standardization as well as the several areas with unusual addresses, such as sub-urban areas or subordinate areas to the roads, etc. In the future, we are planning the improved geocoding methods for considering these cases.

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM (이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -)

  • Rho, Juhee;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2020
  • A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

Mechanical Alignment of Hull Mounted Phased Array Radar on the Separated Mast (분리된 마스트에 설치되는 선체고정 위상 배열 레이더의 기계적 정렬)

  • Seo, Hyeong-Pil;Kim, Dae-Han;Kim, Joon-Woo;Lee, Kyung-Jin;Cho, Kyu-Lyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.465-473
    • /
    • 2019
  • This paper is meaningful as the first case where a 4 - sided hull-fixed phased array radar was installed on a mast separated from Korea and the alignment was verified. The mechanical alignment method was studied for accurately mounting two separate masts for naval ships and the 3D scanner for alignment. Hull-fixed phased array radar uses very high frequency, so the short wavelength can cause a phase difference of the device due to the small positional error. Since the array antenna is fixed with the hull, it has higher accuracy control than the rotary radar for 4 array surfaces. The study describes a method of checking the flatness of two radar masts manufactured at a factory, a method of aligning masts in a shipyard, and a method of aligning four array pad mounting surfaces. As a tool for this, a 3D laser scanner and a software-based method for comparing survey results with 3D CAD are used. This paper is meaningful as the first example of installing a four-sided hull-fixed phased array radar on a separate mast from a Korean naval ship and deriving a mechanical alignment method.

An Experimental Study on Assessing Precision and Accuracy of Low-cost UAV-based Photogrammetry (저가형 UAV 사진측량의 정밀도 및 정확도 분석 실험에 관한 연구)

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Woonggyu;Jeong, Woochul;Jo, Eonjeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.207-215
    • /
    • 2022
  • This research has been focused on accessing precision and accuracy of UAV (Unmanned Aerial Vehicle)-derived 3-D surveying coordinates. To this end, a highly precise and accurate testing control network had been established by GNSS (Global Navigation Satellite Systems) campaign and its network adjustment. The coordinates of the ground control points and the check points were estimated within 1cm accuracy for 95% of the confidence level. FC330 camera mounted on DJI Phantom 4 repeatedly took aerial photos of an experimental area seven times, and then processed them by two widely used software packages. To evaluate the precision and accuracy of the aerial surveys, 3-D coordinates of the ten check points which automatically extracted by software were compared with GNSS solutions. For the 95% confidence level, the standard deviation of two software's result is within 1cm, 2cm, and 4cm for the north-south, east-west, and height direction, and RMSE (Root Mean Square Error) is within 9cm and 8cm for the horizontal, vertical component, respectively. The interest is that the standard deviation is much smaller than RMSE. The F-ratio test was performed to confirm the statistical difference between the two software processing results. For the standard deviation and RMSE of most positional components, exception of RMSE of the height, the null hypothesis of the one-tailed tests was rejected. It indicates that the result of UAV photogrammetry can be different statistically based on the processing software.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Prediction accuracy of incisal points in determining occlusal plane of digital complete dentures

  • Kenta Kashiwazaki;Yuriko Komagamine;Sahaprom Namano;Ji-Man Park;Maiko Iwaki;Shunsuke Minakuchi;Manabu, Kanazawa
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.281-289
    • /
    • 2023
  • PURPOSE. This study aimed to predict the positional coordinates of incisor points from the scan data of conventional complete dentures and verify their accuracy. MATERIALS AND METHODS. The standard triangulated language (STL) data of the scanned 100 pairs of complete upper and lower dentures were imported into the computer-aided design software from which the position coordinates of the points corresponding to each landmark of the jaw were obtained. The x, y, and z coordinates of the incisor point (XP, YP, and ZP) were obtained from the maxillary and mandibular landmark coordinates using regression or calculation formulas, and the accuracy was verified to determine the deviation between the measured and predicted coordinate values. YP was obtained in two ways using the hamularincisive-papilla plane (HIP) and facial measurements. Multiple regression analysis was used to predict ZP. The root mean squared error (RMSE) values were used to verify the accuracy of the XP and YP. The RMSE value was obtained after crossvalidation using the remaining 30 cases of denture STL data to verify the accuracy of ZP. RESULTS. The RMSE was 2.22 for predicting XP. When predicting YP, the RMSE of the method using the HIP plane and facial measurements was 3.18 and 0.73, respectively. Cross-validation revealed the RMSE to be 1.53. CONCLUSION. YP and ZP could be predicted from anatomical landmarks of the maxillary and mandibular edentulous jaw, suggesting that YP could be predicted with better accuracy with the addition of the position of the lower border of the upper lip.

The Improvement of Real-time Updating Methods of the National Base Map Using Building Layout Drawing (건물배치도를 이용한 국가기본도 수시수정 방법 개선)

  • Shin, Chang Soo;Park, Moon Jae;Choi, Yun Soo;Baek, kyu Yeong;Kim, Jaemyeong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.139-151
    • /
    • 2018
  • The National Base Map construction consists of the regular correction work of dividing the whole country into two regions and carrying out the modification Plotting by aerial photographs every two years as well as the real time updating work of correcting the major change feature within two weeks by the field survey and the As-Built Drawing. In the case of the Building Layout Drawing of Korea Real estate Administration intelligence System(KRAS) used for real time updating work of the National base map, the coordinate transformation error is included in the positional error when applied to the National Base Map based on the World Geodetic Reference System as the coordinate system based on the Regional Geodetic Reference System. In addition, National Base Map is registered based on the outline(eaves line) of the building in the Digital Topographic Map, and the Cadastral and Architecture are registered based on the building center line. Therefore, the Building Object management standard is inconsistent. In order to investigate the improvement method, the network RTK survey was conducted directly on a location of the Building Layout Drawing of Korea Real estate Administration intelligence System(KRAS) and the problems were analyzed by comparing with the plane plotting position reference in National Base Map. In the case of the general structure with the difference on the Building center line and the eaves line, beside the location information was different also the difference in the ratio of the building object was different between Building center line and the eave. In conclusion, it is necessary to provide the Base data of the double layer of the Building center line and the outline of the building(eaves line) in order to utilize the Building Layout Drawing of Korea Real estate Administration intelligence System(KRAS). In addition, it is necessary to study an organic map update process that can acquire the up-to-dateness and the accuracy at the same time.

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

Evaluate the Change of Body Shape and the Patient Alignment State During Image-Guided Volumetric Modulated Arc Therapy in Head and Neck Cancer Patients (두경부 환자의 VMAT 시 체형변화와 환자 정렬과의 상관관계 고찰)

  • Seo, Se Jeong;Kim, Tae Woo;Choi, Min Ho;Son, Jong Gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the change of body shape and the patient alignment state during image-guided volumetric modulated arc therapy in head and neck cancer patients, Materials and Methods: We performed a image-guided volumetric modulated arc therapy plan for 89 patients with head and neck cancer who underwent curative radiotherapy. Ten of them were evaluated for set up error. The landmarks of the ramus, chin, posterior neck, and clavicle were specified using ARIA software (Offline review), and the positional difference was analyzed. Results: The re-CT simulation therapy was performed in 60 men with $17{\pm}4$ cycles of treatment. The weight loss rate was $-6.47{\pm}3.5%$. 29 women performed re-CT simulation at $17{\pm}5$ cycles As a result, weight loss rate was $-5.73{\pm}2.7%$. The distance from skin to C1, C3, and C5 was measured, and both clavicle levels were observed to measure the skin shrinkage changes. The skin shrinkage standard deviations were C1 (${\pm}0.44cm$), C3 (${\pm}0.83cm$), and C5 (${\pm}1.35cm$), which is about 1 mm shrinkage per 0.5 kg reduction. Skin shrinkage according to the number of treatments was 1 ~ 4 fractions (no change), 5 ~ 13 fractions (-2 mm), 14 ~ 22 fractions (-4 mm) and 23 ~ 30 fractions (-6 mm). Conclusion: When the body shape changes about 5 mm, the central dose starts to differ about 3 % or more. Therefore, the CT simulation treatment for the adaptive therapy should be additionally performed. In addition, it is necessary to actively study the CT simulation therapy method and set up method of the lower neck and to examine the use of a new immobilization device.

  • PDF