• Title/Summary/Keyword: Position tracking control

Search Result 758, Processing Time 0.035 seconds

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.

An Analytical Study on Control Algorithm for the Precise Position Control of the Actuator System (구동장치의 정밀한 위치제어를 위한 구동제어기법에 대한 해석적 연구)

  • Ahn, Wongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Using a actuator to which the motor and the gear is applied to the I-PD control method and a dual-loop system to carry out precise position control. I-PD control algorithm performs an operation to reduce the overshoot in the transient response. Accordingly, the actuator obtains a precise position tracking result. Also it utilizes two sensors and dual loops. It reduces the adverse effect on the precise position control that may occur by the end play of the gear train. In this paper, we uses the actuator model applying the BLDC motor and gear in order to determine the position tracking result by the dynamic characteristic change. It was verified by the simulation results.

A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation (일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper proposes a novel tacking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV hacking system. The tracking system of sensor method used in a conventional PV power station is unable to exactly track a sun position when lacking in the intensity of radiation and has the problem is malfunction of tracking system by a rapidly changing climatic. The tracking system of program method spends too much energy on the unnecessary operation of tracking system because that is unable to adapt itself to a outside factor of climatic environment. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this pap proposes a novel control algorithm of the tracking system. Also, this paper is analyzed efficiency of traditional solar tracking method and proposed method, prove validity of proposed algorithm through demonstrable study.

A study on path tracking control of fine manipulator based on magnetic levitation (자기부상식 미동 매니퓰레이터의 경로 추종 제어에 관한 연구)

  • 최기봉;박기환;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.700-703
    • /
    • 1997
  • A robust controller for a 6 DOF magnetically levitated fine manipulator is presented. The proposed controller consists of following two parts : a model reference controller (MRC) and a H$_{\infty}$ controller (HIC). First, the MRC stabilizes the motion of the manipulator. Then, the motion of the manipulator follows that of the reference model. Second, the HIC minimizes errors generated from the MRC due to noise and disturbance since the HIC is a kind of robust controller. The experiments of position control and tracking control are carried out by use of the proposed controller under the conditions of free disturbances and forced disturbances. Also, the experiments using PID controller are carried out under the same conditions. The results from above two controllers are compared to investigate the control performances. As the results, it is observed that the proposed controller has similar position accuracy but better tracking performances comparing to the PID controller as well as good disturbance rejection effect due to the robust characteristics of the controller. In conclusion, it is verified that the proposed controller has the simple control structure, the good tracking performances and good disturbance rejection effect due to the robust characteristics of the controller..

  • PDF

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

Position Control of Laser Scanning Mirror Using Piezoelectric Actuator (압전작동기를 이용한 레이져 스케닝 미러의 위치제어)

  • 지학래;김재환;최승복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.442-445
    • /
    • 1995
  • This paper presents the position tracking control of a laser scanning mirror system in which piezoelectic actuator is incorporated. Using the shear mode of the piezoelectric actuator,angular oscillation of a laser scanning mirror is derived. Torsion bar is rhen designed and attached to the piezoelctric actuator in order to magnify the amplitude generated by the actuator. Finite element modeling and analysis are essntial for designing the piezoelectic actuator. The torsional resonance mode of the piezoelectric actuator is found from the model analysis of the actuator and the mechanical shear is matched with the driving frequency. Transfer function between the electrical excitation and the mechanical shear deformation at resonance frequency is found form the response of the actuator calculated by the finite element analysis and the governing equation of the system is derived from d'Alembert's principle. Tracking control performance for desired trajectory which is, in fact, sinusoidal curve is presented in order to demonstrate the validity of the proposed system.

  • PDF

A study of effective filter algorithms for multi-target tracking (다중표적추적을 위한 효과적인 필터 알고리듬에 대한 연구)

  • 이동관;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.99-99
    • /
    • 2000
  • An effect ive filter algorithm that can manage radar beam pointing efficiently is needed to track multi-target in the air. For effective beam management the filter has lobe good enough to predict future position of target and based on this filter output radar beam is control led to point toward the predicted target position in the air. In this paper, we investigate the ${\alpha}$-${\beta}$ filter known for its brief filter structure with the steady-state Kalman filter gain, the ruv filter, and the coordinate-transformed filter that can decouple the measurement noise variance.

  • PDF

Design and Manufacture of Laser Tracking System for Measuring Position Accuracy of Robots (로봇의 위치 정밀도 측정을 위한 LTS의 설계 및 제작)

  • Hwang, Sung-Ho;Lee, Ho-Gil;Park, Gyeong-Rak;Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.518-522
    • /
    • 2001
  • The main problem of the calibration of robots is to measure the position and orientation of a robot end effector. The calibration methods can be used as tool to improve the accuracy of robots without change of the arm or control architecture or robots. But such calibration methods require accurate measurements. Dynamic measurement of position and orientation provides a solution for this problem and improves dynamic accuracy by dynamic calibration of robots. This paper describes the development of the laser tracking system capable of determining the static and dynamic performance of industrial robots. The structure and systems components are presented and basic experimental results are included to demonstrated the instrument performance. The system can be applied to the remote controlled mobile robots as well s the calibration of robots.

  • PDF

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Autonomous Tracking of Micro-Sized Flying Insects Using UAV: A Preliminary Results

  • Ju, Chanyoung;Son, Hyoung Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.125-137
    • /
    • 2020
  • Tracking micro-sized insects is one of the challenges of protecting ecosystems and biodiversity. In this study, we propose an approach for the autonomous tracking of micro-sized flying insects, and develop an unmanned aerial vehicle (UAV)-based robotic system. The Kalman filter is applied to the received signal strength emitted from radio telemetry to estimate the position while reducing the measurement error and noise. The autonomous tracking strategy is a method in which the UAV rotates at one point to measure the signal strength and control its position in the strongest direction of the signal. We also design a system architecture comprising a tracking sensor system and a UAV system for micro-sized insects. The estimation and autonomous tracking of the target position by the proposed system are verified and evaluated through dynamic simulation. Therefore, in this study, we propose and validate a UAV-based tracking system for micro-sized flying insects, which has not been proposed in studies conducted thus far.