• Title/Summary/Keyword: Position sensors

Search Result 1,145, Processing Time 0.036 seconds

A Calibration Technique for a Redundant IMU Containing Low-Grade Inertial Sensors

  • Cho, Seong-Yun;Park, Chan-Gook
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.418-426
    • /
    • 2005
  • A calibration technique for a redundant inertial measurement unit (IMU) containing low-grade inertial sensors is proposed. In order to calibrate a redundant IMU that can detect and isolate faulty sensors, the fundamental coordinate frames in the IMU are defined and the IMU error is modeled based on the frames. Equations to estimate the error coefficients of the redundant IMU are formulated, and a test sequence using a 2-axis turntable is also presented. Finally, a redundant IMU with cone configuration is implemented using low-grade inertial sensors, and the performance of the proposed technique is verified experimentally.

  • PDF

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

A Sonar-based Position Estimation Algorithm for Localization of Mobile Robots (초음파 센서를 이용한 이동로봇의 자기위치 파악 알고리즘)

  • Joe, Woong-Yeol;Oh, Sang-Rok;Yu, Bum-Jae;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.159-162
    • /
    • 2002
  • This paper presents a modified localization scheme of a mobile robot. When it navigates, the position error of a robot is increased and doesn't go to a goal point where the robot intends to go at the beginning. The objective of localization is to estimate the position of a robot precisely. Many algorithms were developed and still are being researched for localization of a mobile robot at present. Among them, a localization algorithm named continuous localization proposed by Schultz has some merits on real-time navigation and is easy to be implemented compared to other localization schemes. Continuous Localization (CL) is based on map-matching algorithm with global and local maps using only ultrasonic sensors for making grid maps. However, CL has some problems in the process of searching the best-scored-map, when it is applied to a mobile robot. We here propose fast and powerful map-matching algorithm for localization of a mobile robot by experiments.

  • PDF

Design and Performance Evaluation of Attitude Control System for Unfixed Levitation Sculptures (무 고정 공중부양 조형물의 자세 제어장치 설계 및 성능평가)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.11-17
    • /
    • 2017
  • The aerial support air sculptures currently exhibited in indoor spaces are similar to simple ad balloons, using multiple rope strands. Users now want more advanced unfixed sculptures, and hope these will develop into buoyant sculptures that can maintain the attitudes that users want on their own. This study investigated an attitude control system for unfixed levitation sculptures that can levitate with no rope and continuously maintain a certain attitude at a height specified by the user. To facilitate levitation, the exterior part of the sculpture was made of lightweight fibers, and the interior part was filled with helium gas. The controller was composed of a microprocessor of the dsPIC30F line from microchip, gyro, acceleration, and earth magnetic field sensors, and a highly efficient brushless DC (BLDC) electric motor. The attitude and position control system requires scheduling considering the trajectories of the sculpture and the control system, because the roles of the overall components are more important than those of a single controller. Furthermore, the system was designed like a fusion system that is expanded and controlled as a total controller, because it is interconnected with various sensors. The attitude control system of buoyant sculptures was implemented in this study, such that it can actively cope with the position, direction, stopping, and time aspects. The system performance was then evaluated.

3D Depth Measurement System based on Parameter Calibration of the Mu1ti-Sensors (실거리 파라미터 교정식 복합센서 기반 3차원 거리측정 시스템)

  • Kim, Jong-Man;Kim, Won-Sop;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • The analysis of the depth measurement system with multi-sensors (laser, camera, mirror) has been done and the parameter calibration technique has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance.

  • PDF

A Novel Linearization Method of Sin/Cos Sensor Signals Used for Angular Position Determination

  • Zivanovi, Dragan;Lukic, Jelena;Denic, Dragan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1437-1445
    • /
    • 2014
  • In this paper a novel method for angular position determination using sensors with sin/cos output and without an excitation signal, is presented. The linearization of the sensor transfer characteristic and digitalization of the measurement results are performed simultaneously with a goal to increase the measurement resolution. This improvement is particularly important for low angular velocities, and can be used to increase the resolution of incremental Hall, magnetic and optical sensors. This method includes two phases of sin/cos signal linearization. In the first linearization phase the pseudo-linear signal is generated. The second linearization phase, executed by the two-stage piecewise linear ADC, is an additional linearization of the pseudo-linear signal. Based on the LabVIEW software simulations of the proposed method, the contribution of each processing phase to a final measurement error is examined. After the proposed method is applied within $2{\pi}$ [rad] range, the maximal nonlinearity is reduced from 0.3307 [rad] ($18.9447^{\circ}$) to $3{\cdot}10^{-4}$ [rad] ($0.0172^{\circ}$).

A study on method to improve the detection accuracy of the location at multi-sensor environment (다중 센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.248-254
    • /
    • 2013
  • In location finding system using spaced multi-sensor, there is the phenomenon that the position estimation accuracy is degraded by the location of signal sources and the sensors. This phenomenon is called GDOP(Geometric Dilution Of Precision) effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating possibility of GDOP using AOA(angle of arrival) information of spaced multi sensors, and removing sensor error factor in position estimation.

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors and Performance Evaluation (정전용량형 변위 센서 신호 처리 회로 개발 및 성능 평가)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Eom, Tae-Bong;Kang, Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.60-67
    • /
    • 2007
  • A signal conditioning circuit for capacitive displacement sensors was developed using a high frequency modulation/demodulation method, and its performance was evaluated. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. The developed signal processing circuit consists of three parts: linearization, modulation/demodulation, and nonlinearity compensation. Each part was constructed discretely using several IC chips and passive elements. An evaluation system for precision displacement sensors was developed using a laser interferometer, a precision stage, and a PID position controller. The signal processing circuit was tested using the evaluation system in the respect of resolution, repeatability, linearity, and so on. From the experimental results, we know that a highly linear voltage output can be obtained successfully, which is proportional to displacement and the nonlinearity of output is less than 0.02% of full range. However, in the future, further investigation is required to reduce noise level and phase delay due to a low-pass filter. The evaluation system also can be applied effectively to calibration and evaluation of precision sensors and stages.

Personal Navigation System Using GPS and Dead Reckoning (GPS와 추축항법을 이용항 개인휴대 항법시스템)

  • Hong, Jin-Seok;Yoon, Seon-Il;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.454-464
    • /
    • 2001
  • In this paper, a personal navigation system is developed using GPS and dead reckoning sensors. This personal navigation system can be used to track a person inside a building, on an urban street, and in the mountain area. GPS can provide accurate absolute position information, but it cant be used without receiving enough satellite signals. Although the inertial sensors such as gyro an accelerometer and be used without this diggiculty, the inertial sensors severely suffer from their drift errors and the magne-tometer can be easily distorted by surrounding electromagnetic field. GPS and DR sensors can be inte-grated together to overcome these problems. A new personal navigation system that can be carried wit person is developed. A pedometer. actually vertically mounted accelerometer, detects ones footstep and gyro detects heading angle. These DR sensors are integrated with GPS and the humans walking pattern provides additional navigation information for compensating the DR sensors. The field testes are performed to evaluated the proposed navigation algorithm.

  • PDF