• Title/Summary/Keyword: Position sensor

Search Result 2,300, Processing Time 0.032 seconds

Design of the Magnetization System of the Permanent Magnet in Magnetic Sensors (마그네틱 위치 센서용 영구자석의 착자 시스템 설계)

  • Jeong, Seung-Ho;Lee, Chul-Kyu;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1029-1031
    • /
    • 2005
  • A magnetic position sensor is a apparatus that detect the rotating position by measuring the value of the flux density of the rotating position. In this paper, the magnetization system of the permanent magnet in the magnetic position sensor which detects the rotating position was designed. The permanent magnet was magnetized for the flux density into the hole element to be sinusoidal distribution according to the rotating position. To make the sinusoidal distribution of flux density, the magnetization values according to the position in permanent magnet were varied by adjusting the air gap between the pole of the magnetization fixture and the surface of the permanent magnet.

  • PDF

Relative Position Estimation using Kalman Filter Based on Inertial Sensor Signals Considering Soft Tissue Artifacts of Human Body Segments (신체 분절의 연조직 변형을 고려한 관성센서신호 기반의 상대위치 추정 칼만필터)

  • Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.237-242
    • /
    • 2020
  • This paper deals with relative position estimation using a Kalman filter (KF) based on inertial sensors that have been widely used in various biomechanics-related outdoor applications. In previous studies, the relative position is determined using relative orientation and predetermined segment-to-joint (S2J) vectors, which are assumed to be constant. However, because body segments are influenced by soft tissue artifacts (STAs), including the deformation and sliding of the skin over the underlying bone structures, they are not constant, resulting in significant errors during relative position estimation. In this study, relative position estimation was performed using a KF, where the S2J vectors were adopted as time-varying states. The joint constraint and the variations of the S2J vectors were used to develop a measurement model of the proposed KF. Accordingly, the covariance matrix corresponding to the variations of the S2J vectors continuously changed within the ranges of the STA-causing flexion angles. The experimental results of the knee flexion tests showed that the proposed KF decreased the estimation errors in the longitudinal and lateral directions by 8.86 and 17.89 mm, respectively, compared with a conventional approach based on the application of constant S2J vectors.

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 자동 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives at the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. The relative position information between the spreader and a container using the laser range finder and tilt sensor is estimated through the geometrical analysis.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

Design of the Crane position control System using GPS and USN (GPS와 USN을 이용한 크레인 위치제어 시스템 설계)

  • Lim, Su-Il;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1520-1525
    • /
    • 2009
  • In this paper, we study and simulate the suggested position control system using GPS and USN to replace the existing control system of a crane. For the correct approach, the position control system of a crane is divided into the control system of the ground station and the mobile station The hardware is comprised of GPS receiving module to receive the position control data of a crane from GPS satellites, bluetooth communication module for the data communication between the ground station and the mobile station, supersonic sensor module for a precise position control of a crane, motor to replace a crane roller, embedded MCU(ATmega128L) and so on. In here, an embedded MCU controls GPS receiving module, bluetooth communication module and supersonic sensor module. The Software is comprised of three programs. Three programs are the program to filter GGA output part in a receiving data of GPS receiving module, the driving program for supersonic sensor module, the digital map program to monitor a crane location. From the simulation results, it is demonstrated that the proposed system has the capability of crane position control with 1cm precision.

An on-line measurement of robot tracking error via an optical PSD sensor (PSD센서를 사용한 로보트 추적 오차의 실시간 측정에 관한 연구)

  • 김완수;박용길;조형석;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.433-437
    • /
    • 1988
  • Direct measurement of the relative position between the end effector of robot and moving objects reduces difficulties caused by the joint encoder reading and transformation. For those purpose, the on-line sensing method using PSD sensor was developed in this paper. The sensor was calibrated on the precision table. Then, the relative position of a moving objects on the conveyor was measured while the robot was tracking the one.

  • PDF

A Laser Vision System for the High-Speed Measurement of Hole Positions (홀위치 측정을 위한 레이져비젼 시스템 개발)

  • Ro, Young-Shick;Suh, Young-Soo;Choi, Won-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.333-335
    • /
    • 2006
  • In this page, we developed the inspection system for automobile parts using the laser vision sensor. Laser vision sensor has gotten 2 dimensions information and third dimension information of laser vision camera using the vision camera. Used JIG and ROBOT for inspection position transfer. Also, computer integration system developed that control system component pal1s and manage data measurement information. Compare sensor measurement result with CAD Data and verified measurement result effectiveness taking advantage of CAD to get information of measurement object.

  • PDF

Localization Algorithm in Wireless Sensor Networks using the Acceleration sensor (가속도 센서를 이용한 무선 센서 네트워크하에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Jung, Suk-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1294-1300
    • /
    • 2010
  • In an environment where all nodes move, the sensor node receives anchor node's position information within communication radius and modifies the received anchor node's position information by one's traveled distance and direction in saving in one's memory, where if there at least 3, one's position is determined by performing localization through trilateration. The proposed localization mechanisms have been simulated in the Matlab. In an environment where certain distance is maintained and nodes move towards the same direction, the probability for the sensor node to meet at least 3 anchor nodes with absolute coordinates within 1 hub range is remote. Even if the sensor node has estimated its position with at least 3 beacon information, the angle ${\theta}$ error of accelerator and digital compass will continuously apply by the passage of time in enlarging the error tolerance and its estimated position not being relied. Dead reckoning technology is used as a supplementary position tracking navigation technology in places where GPS doesn't operate, where one's position can be estimated by knowing the distance and direction the node has traveled with acceleration sensor and digital compass. The localization algorithm to be explained is a localization technique that uses Dead reckoning where all nodes are loaded with omnidirectional antenna, and assumes that one's traveling distance and direction can be known with accelerator and digital compass. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

A Simple Fault Correction Method for Rotor Position Detection of Brushless DC Motor using a Latch Type Hall Effect Sensor

  • Baik In-Cheol;Joo Hyeong-Gil
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.62-66
    • /
    • 2005
  • A simple fault correction method for rotor position detection of a brushless DC(BLDC) motor with trapezoidal back EMF(electromotive force) using a Hall effect latch unit is presented. The reason why the Hall effect latch unit does not operate properly during the startup of a BLDC motor is thoroughly explained. To solve this problem, a simple code change method and its hardware implementation issues are proposed and discussed.