• Title/Summary/Keyword: Position determining system

Search Result 166, Processing Time 0.025 seconds

Moving Object Trajectory based on Kohenen Network for Efficient Navigation of Mobile Robot

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, we propose a novel approach to estimating the real-time moving trajectory of an object is proposed in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

EVALUATION OF THE MEASUREMENT NOISE AND THE SYSTEMATIC ERRORS FOR THE KOMPSAT-1 GPS NAVIGATION SOLUTIONS

  • Kim Hae-Dong;Kim Eun-Kyou;Choi Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.278-280
    • /
    • 2004
  • GPS Navigation Solutions are used for operational orbit determination for the KOMPSAT-1 spacecraft. GPS point position data are definitely affected by systematic errors as well as noise. Indeed, the systematic error effects tend to be longer term since the GPS spacecrafts have periods of 12 hours. And then, the overlap method of determining orbit accuracy is always optimistic because of the presence of systematic errors with longer term effects. In this paper, we investigated the measurement noise and the system error for the KOMPSAT-l GPS Navigation Solutions. To assess orbit accuracy with this type of data, we use longer data arcs such as 5-7 days instead of 30 hour data arc. For this assessment, we should require much more attention to drag and solar radiation drag parameters or even general acceleration parameters in order to assess orbit accuracy with longer data arcs. Thus, the effects of the consideration of the drag, solar radiation drag, and general acceleration parameters were also investigated.

  • PDF

Development of 3-Dimensional Position/Attitude Determination Radio-navigation System with FLAOA and TOA Measurements

  • Jeon, Jong-Hwa;Lim, Jeong-Min;Yoo, Sang-Hoon;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.61-71
    • /
    • 2018
  • Existing radio positioning systems have a drawback that the attitude of user's tag is difficult to be determined. Although forward link angle of arrival (FLAOA) technology that uses measurements of array antenna arranged in a tag among the angle of arrival (AOA) technologies can estimate attitude and positioning of tags, it cannot extend the estimated results into three-dimensional (3D) results due to complex non-linear model displayed because of the effects of 3D positioning and attitude in tags. This paper proposed a radio navigation technique that determines 3D attitude and positioning via FLAOA / time of arrival (TOA) integration. According to the order of determining attitude and positioning, two integration techniques were proposed. To analyze the performance of the proposed technique, MATLAB-based simulations were used to verify the performance. The simulation results showed that the first proposed method, TOA-FLAOA integrated technique, showed about 0.15 m of positioning error, and $2-3^{\circ}$ of attitude error performances regardless of the positioning space size whereas the second method, differenced FLAOA-TOA integrated technique, revealed a problem that a positioning error became larger as the size of the positioning space became larger.

An Efficient Ways of Improving Regulations on Insider Trading (내부자거래(內部者去來) 규제개선(規制改善)의 효율적(效率的)인 방안(方案))

  • Park Sang-Bong
    • Management & Information Systems Review
    • /
    • v.4
    • /
    • pp.611-629
    • /
    • 2000
  • In the legislation interpretation and fundamental viewpoint about the legal system of insider trading, Japan strictly legislate under the proposition, the principle of 'nulla poena,' adopted 'the principle of limited enumeration,' and United states, under 'the principle of comprehension,' has entrusted courts with establishment of concrete concepts and standard, so the courts are very flexible in determining the range of insiders and the importance of inside information to show a strong will to eradicate insider trading. Korea has a legislative position of 'the principle of limited indication' which has been created by the negotiation between those principles of United states and Japan. Though this court has interpreted insider trading, insider trading using non-disclosed information has increased lately, needing the strengthening of its regulations. However, this shows us that sophisticate the regulations may be, the exposure of insider trading has limitations. The most important thing is to change recognition for transparency of the securities market, security of investors and to establish the atmosphere which is that fair stock trading made in a sound capital market to raise funds for corporation. The policies of improving unfair trading, self-regulation bodies, raising the transparency and legality of procedures of supervision and monitoring and applying 'compliance program' to stock companies are very needed to eliminate unfair trading in the securities market and establish the order of trading.

  • PDF

A Nationwide Study on Optical Analysis for Expecting HEOs to Support Ambulances

  • Nakajima, Isao;Tsuda, Kazuhide;Juzoji, Hiroshi;Ta, Masuhisa;Nakajima, Atsushi
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.107-118
    • /
    • 2019
  • This paper deals with actual optical data from rural as well as urban areas in a nationwide study captured with Fisheye cameras. Simultaneously data was collected (of the receiving power density) from the mobile communications satellite N-STAR. The visibility of the satellite is easily determined by checking the value of the pixels in the binarized fisheye image of its position. The process of determining the visible satellite is automatically performed. Based on the analyses of the field data measured in Japan, we are expecting HEOs (Highly inclined Elliptical Orbiters) that would reduce blockage in the extreme northern region of Wakkanai City well as in the most crowded urban area, in Tokyo Ginza. In case of HEOs operation, the elevation angle will improve from 37 with N-STAR GEO to 75 degrees. HEOs could replace 5G/Ka-band or support in rural areas where broadband circuit is not available. We are proposing combination operations with HEOs and 5G/Ka-band to solve blockage problems, because HEOs can keep line-of-sight propagation with high elevation angle for long duration. In such operations, the communications profile on the vehicle based on actual optical data will be very useful to predict blockages and to select/switch a suitable circuit.

Performance Comparison of Machine Learning Algorithms for Received Signal Strength-Based Indoor LOS/NLOS Classification of LTE Signals

  • Lee, Halim;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.361-368
    • /
    • 2022
  • An indoor navigation system that utilizes long-term evolution (LTE) signals has the benefit of no additional infrastructure installation expenses and low base station database management costs. Among the LTE signal measurements, received signal strength (RSS) is particularly appealing because it can be easily obtained with mobile devices. Propagation channel models can be used to estimate the position of mobile devices with RSS. However, conventional channel models have a shortcoming in that they do not discriminate between line-of-sight (LOS) and non-line-of-sight (NLOS) conditions of the received signal. Accordingly, a previous study has suggested separated LOS and NLOS channel models. However, a method for determining LOS and NLOS conditions was not devised. In this study, a machine learning-based LOS/NLOS classification method using RSS measurements is developed. We suggest several machine-learning features and evaluate various machine-learning algorithms. As an indoor experimental result, up to 87.5% classification accuracy was achieved with an ensemble algorithm. Furthermore, the range estimation accuracy with an average error of 13.54 m was demonstrated, which is a 25.3% improvement over the conventional channel model.

Concept Development of a Simplified FPGA based CPCS for Optimizing the Operating Margin for I-SMRs

  • Randiki, Francis;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • The Core Protection Calculator System (CPCS) is vital for plant safety as it ensures the required Specified Acceptance Fuel Design Limit (SAFDL) are not exceeded. The CPCS generates trip signals when Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD) exceeds their predetermined setpoints. These setpoints are established based on the operating margin from the analysis that produces the SAFDL values. The goal of this research is to create a simplified CPCS that optimizes operating margin for I-SMRs. Because the I-SMR is compact in design, instrumentation placement is a challenge, as it is with Ex-core detectors and RCP instrumentation. The proposed CPCS addresses the issue of power flux measurement with In-Core Instrumentation (ICI), while flow measurement is handled with differential pressure transmitters between Steam Generators (SG). Simplification of CPCS is based on a Look-Up-Table (LUT) for determining the CEA groups' position. However, simplification brings approximations that result in a loss of operational margin, which necessitates compensation. Appropriate compensation is performed based on the result of analysis. FPGAs (Field Programmable Gate Arrays) are presented as a way to compensate for the inadequacies of current systems by providing faster execution speeds and a lower Common Cause Failure rate (CCF).

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

The Optimal Operation of Distributed Generation Possessed by Community Energy System Considering Low-Carbon Paradigm (저탄소 패러다임에 따른 구역전기사업자의 분산전원 최적 운영에 관한 연구)

  • Kim, Sung-Yul;Shim, Hun;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1504-1511
    • /
    • 2009
  • By development of renewable energies and high-efficient facilities and deregulated electricity market, the operation cost of distributed generation(DG) becomes more competitive. The amount of distributed resource is considerably increasing in the distribution network consequently. Also, international environmental regulations of the leaking carbon become effective to keep pace with the global efforts for low-carbon paradigm. It contributes to spread out the business of DG. Therefore, the operator of DG is able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, community energy system(CES) having DGs is recently a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to the transmission service charges and etc. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize the profit. If there is no regulation for carbon emission(CE), the generators which get higher production than generation cost will hold a prominent position in a competitive price. However, considering the international environment regulation, CE newly will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper will introduce the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES and Particle Swarm Optimization (PSO) will be used to solve this problem. The optimal operation of DG represented in this paper is to be resource to CES and system operator for determining the decision making criteria.