• Title/Summary/Keyword: Position determining system

Search Result 165, Processing Time 0.022 seconds

A Study on the Development of Dredge Process Management System (준설공정관리시스템 개발에 관한 연구)

  • 정대득;이중우;조증언
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 2001
  • Accuracy of dredging processes depends on the types of equipment used, the sediments encountered, whether the work to be performed is new or maintenance dredging, pre- and post-hydrographic surveying and so forth. Among those, position surveying accuracy which is directly determined by the control of the dredge's position and depth surveying accuracy being surveyed at the dredging point during dredging work are important factors. The purpose of this study is to develop 'Dredge Management System'for Grab dredge which is composed of 4 sub-system using LADGPS for dredge position determining system and dredging point determining system, tide gauge system and optical sensor for depth determining system and GIS and ENC for total management system. This system is installed on the grab dredge 'EUNJIN G-18'and applied to anchorage dredging work. at Pohang Harbor. The results revealed that this system is easy to operate, achieves good accuracy with only 45cm unevenness, reduces working period by 22 percent and saves cost 16.6 percent.

  • PDF

A system measuring the functional dimension of the hand and arm (손/팔의 기능적 치수 측정시스템)

  • 이경태;강신길;박재희
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.219-224
    • /
    • 1996
  • By integrating the wired-glove and the position sensor using the magnetic fields, we developed the system which could measure the functional dimension of the hand and arm of the human. Magnetic position sensor traces the position and orientation of the arm while the wired-glove measures 18 phalangeal joint angles(including abduction between fingers, pitch and yaw of the wiist). The system could be used to monitor and quantify the functional dimension of the hand and arm and also could be used to test the product usability where the hand motion is important. Another important application lies in determining the degree of paralysis.

  • PDF

An Application of Computer Vision System for the Determination of Object Position in the Plane (평면상에 있는 물체 위치 결정을 위한 컴퓨터 비젼 시스템의 응용)

  • 장완식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.62-68
    • /
    • 1998
  • This paper presents the application of computer vision for the purpose of determining the position of the unknown object in the plane. The presented control method is to estimate the six view parameters representing the relationship between the image plane coordinates and the real physical coordinates. The estimation of six parameters is indispensable for transforming the 2-dimensional camera coordinates to the 3-dimensional spatial coordinates. Then, the position of unknown point is estimated based on the estimated parameters depending on the cameras. The suitability of this control scheme is demonstrated experimentally by determining position of the unknown object in the plane.

  • PDF

Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot (저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정)

  • 최경진;이용현;박종국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.

Visral Control of Robotic Manipulators Based on Neural Network (시각정보에 의한 로보트 매니퓰레이터의 위치.자세 제어 - 신경회로망의 이용)

  • 심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1042-1046
    • /
    • 1993
  • This paper describes a control scheme for a robot manipulator system which uses visual information to position and orientate the end-effector. In this scheme, the position and orientation of the target workpiece with respect to the base frame of the robot are assumed to be unknown, but the desired relative position and orientation of the end-effector to the target workpiece are given in advance. The control scheme directly integrates visual data into the servoing process without subdividing the process into determination of the position and orientation of the workpiece and inverse kinematics calculation. A neural network system is used for determining the change in joint angles required in order to achieve the desired position and orientation. The proposed system can be control the robot so that it approach the desired position and orientation from arbitrary initial ones. Simulation for the robot manipulator with six degrees of freedom will be done. The validity and the effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

Design and Manufacture of Laser Tracking System for Measuring Position Accuracy of Robots (로봇의 위치 정밀도 측정을 위한 LTS의 설계 및 제작)

  • 황성호;이호길;최령락;송웅희;김진영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.434-434
    • /
    • 2000
  • It is the main problem to measure the position and orientation of a robot end effector for the calibration of robots. The calibration methods can be used as a tool to improve the accuracy of robots without change of the arm or control architecture of robots. But such calibration methods require the accurate measurements. Dynamic measurement of position and orientation Provides a solution of this problem and improves dynamic accuracy by dynamic calibration o( robots. This paper describes the development o( the laser tracking system capable of determining the static and dynamic performance of industrial robots. The structure and system components are presented and basic experimental results are included to demonstrate the instrument performance. The system can be applied to the remote controlled mobile robots as weil as the calibration of robots.

  • PDF

Along-Track Position Error Bound Estimation using Kalman Filter-Based RAIM for UAV Geofencing

  • Gihun, Nam;Junsoo, Kim;Dongchan, Min;Jiyun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Geofencing supports unmanned aerial vehicle (UAV) operation by defining stay-in and stay-out regions. National Aeronautics and Space Administration (NASA) has developed a prototype of the geofencing function, SAFEGUARD, which prevents stayout region violation by utilizing position estimates. Thus, SAFEGUARD depends on navigation system performance, and the safety risk associated with the navigation system uncertainty should be considered. This study presents a methodology to compute the safety risk assessment-based along-track position error bound under nominal and Global Navigation Satellite Systems (GNSS) failure conditions. A Kalman filter system using pseudorange measurements as well as pseudorange rate measurements is considered for determining the position uncertainty induced by velocity uncertainty. The worst case pseudorange and pseudorange rate fault-based position error bound under the GNSS failure condition are derived by applying a Receiver Autonomous Integrity Monitor (RAIM). Position error bound simulations are also conducted for different GNSS fault hypotheses and constellation conditions with a GNSS/INS integrated navigation system. The results show that the proposed along-track position error bounds depend on satellite geometries caused by UAV attitude change and are reduced to about 40% of those of the single constellation case when using the dual constellation.

Determination of Object Position Using Robot Vision (로보트 비전을 이용한 대상물체의 위치 결정에 관한 연구)

  • Park, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.104-113
    • /
    • 1996
  • In robot system, the robot manipulation needs the information of task and objects to be handled in possessing a variaty of positions and orientations. In the current industrial robot system, determining position and orientation of objects under industrial environments is one of major problems. In order to pick up an object, the roblt needs the information about the position and orientation of object, and between objects and gripper. When sensing is accomplished by pinhole model camera, the mathematical relationship between object points and their images is expressed in terms of perspective, i.e., central projection. In this paper, a new approach to determine the information of the supporting points related to position and orientation of the object using the robot vision system is developed and testified in experimental setup. The result will be useful for the industrial, agricultural, and autonomous robot.

  • PDF

Determining the Location of Distribution Center in Business Logistics (로지스틱스관리에서 배송센터의 입지선정)

  • 한수희;오형술
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.33-46
    • /
    • 1997
  • The location decision problem for distribution center is one of the most important problem in business logistics system. Because the proportion of holding and transportation cost to physical distribution cost in our country exceed the 60%, a corporation must feel strong pressure to investigate the location problem for distribution center. This paper presents an algorithm for determining the best location of distribution center in consideration with physical distribution cost, demand, and customer location. The methods of determining the distribution center location is that firstly many of proposed sites are built up where demand position is distributed, and then optimal location of distribution center is selected.

  • PDF

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.