• Title/Summary/Keyword: Position correction

Search Result 650, Processing Time 0.036 seconds

Bluetooth Smart Ready implementation and RSSI Error Correction using Raspberry (라즈베리파이를 활용한 블루투스 Smart Ready 구현 및 RSSI 오차 보정)

  • Lee, Sung Jin;Moon, Sang Ho
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.280-286
    • /
    • 2022
  • In order to efficiently collect data, it is essential to locate the facilities and analyze the movement data. The current technology for location collection can collect data using a GPS sensor, but GPS has a strong straightness and low diffraction and reflectance, making it difficult for indoor positioning. In the case of indoor positioning, the location is determined by using wireless network technologies such as Wifi, but there is a problem with low accuracy as the error range reaches 20 to 30 m. In this paper, using BLE 4.2 built in Raspberry Pi, we implement Bluetooth Smart Ready. In detail, a beacon was produced for Advertise, and an experiment was conducted to support the serial port for data transmission/reception. In addition, advertise mode and connection mode were implemented at the same time, and a 3-count gradual algorithm and a quadrangular positioning algorithm were implemented for Bluetooth RSSI error correction. As a result of the experiment, the average error was improved compared to the first correction, and the error rate was also improved compared to before the correction, confirming that the error rate for position measurement was significantly improved.

Position Control of Linear Induction Motor with Cage-type Secondary Using Direct Thrust Control (DTC를 이용한 농형 선형유도전동기의 위치 제어)

  • Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.9-11
    • /
    • 2004
  • This paper presents a position control system for a linear induction motor(LIM) with cage-type secondary using direct thrust control(DTC). The position controller, that combines the merits of integral-proportional(IP) speed control, is designed for the LIM. The actual position of the LIM is defected by the linear scale the resolution of 100. Thrust correction coefficient due to the end effect of the LIM is utilized in estimating actual thrust. As a result, responses of the position, speed, thrust, and flux are shown.

  • PDF

A Study On Precision Enhancement Of The Ship's Position By AIS-based DGPS Service (AIS기반 DGPS 서비스에 의한 선박위치정보 정밀도 향상에 관한 연구)

  • Roh, Joung-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.375-378
    • /
    • 2009
  • AIS ship position transmitted from ships has been used position data generated by GPS, whose range of error is approximately 30nm. However, precision enhancement of the ship's position could be possible using DGPS correction information. More precise and accurate AIS ship position could be obtained broadcasting DGNSS Message(AIS Message 17) from ships without high-priced DGPS Beacon Receivers.

  • PDF

On-line Compensation Method for Magnetic Position Sensor using Recursive Least Square Method (재귀형 최소 자승법을 이용한 자기 위치 센서의 실시간 보상 방법)

  • Kim, Ji-Won;Moon, Seok-Hwan;Lee, Ji-Young;Chang, Jung-Hwan;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2246-2253
    • /
    • 2011
  • This paper presents the error correction method of magnetic position sensor using recursive least square method (RLSM) with forgetting factor. Magnetic position sensor is proposed for linear position detection of the linear motor which has tooth shape stator, consists of permanent magnet, iron core and linear hall sensor, and generates sine and cosine waveforms according to the movement of the mover of the linear motor. From the output of magnetic position sensor, the position of the linear motor can be detected using arc-tan function. But the variation of the air gap between magnetic position sensor and the stator and the error in manufacturing process can cause the variation in offset, phase and amplitude of the generated waveforms when the linear motor moves. These variations in sine and cosine waveforms are changed according to the current linear motor position, and it is very difficult to compensate the errors using constant value. In this paper, the generated sine and cosine waveforms from the magnetic position sensor are compensated on-line using the RLSM with forgetting factor. And the speed observer is introduced to reduce the effect of uncompensated harmonic component. The approaches are verified by some simulations and experiments.

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

Study on the improvement of GNSS positioning accuracy on Korean railroad lines (위성항법시스템의 국내 철도적용시 측위정확성 개선 방안 연구)

  • Shin, Kyung-Ho;Shin, Duc-Ko;Song, Yong-Soo;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.109-116
    • /
    • 2011
  • In this paper, we investigate the scheme to improve the position accuracy using GNSS(Global Navigation Satellite System). Then we configure the real-time DGPS environment with use of NTRIP currently being in service on the DGNSS central office of MLTM(Ministry of Land and Transportation). And we verify the improvement of position accuracy and the continuity of GPS correction data through the DGPS test in Chungbuk line and Joongang line.

  • PDF

Study on the Applicability of SBAS in Railway Application (위성기반 위치보정시스템의 철도 적용성 연구)

  • Shin, Kyung-Ho;Shin, Duck-Ho;Baek, Jong-Hyen;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2768-2774
    • /
    • 2011
  • In this paper, we investigate the methods to improve the position accuracy using DGNSS(Differential Global Navigation Satellite System). Then we configure the real-time DGNSS environment with use of GPS and MSAS as SBAS(Satellite Based Augmentation System) currently being in service by Japan. And we verify the improvement of position accuracy and the continuity of GPS correction data through the realtime DGNSS test in Joongang line, Kyungbu line, Honam line.

  • PDF

종합병원관리 전산화 System-MEDIOS

  • 이승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.55-58
    • /
    • 1982
  • In this paper, a method for camera position estimation in gaster using elechoendoscopic image sequence is proposed. In order to obtain proper image sequences, the gaster in divided into three sections. It is presented that camera position modeling for 3D information extraction and image distortion due to the endoscopic lenses is corrected.The feature points are represented with respect to the reference coordinate system belpw 10 percents error rate. The faster distortion correction algorithm is proposed in this paper. This algorithm uses error table which is faster than coordinate transform method using n-th order polynomials.

  • PDF

Effects of Nerve Mobilization Exercise and Scapula Postural Correction Exercise for Adhesive Capsulitis Patients (신경가동운동과 견갑골 자세교정운동이 오십견 환자에게 미치 는 영향)

  • Jung, Min-keun;Kim, Yu-ri;Kim, Wan-ki;Jeon, Jae-guk
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2018
  • Background: This study examined the effects of nerve mobilization exercise and scapula postural correction exercise and scapula postural correction exercise after applying conservative physical therapy to frozen shoulder. Methods: Thirty-four outpatients were divided into a nerve mobilization exercise and scapula postural correction exercise group and scapula postural correction exercise group. Each group performed its own exercise 30 minutes per day, three times per week, for 6 weeks. Pain intensity was measured by the visual analogue scale. Range of motion was measured by the goniometer. The scapular position was measured by scapular index. Grasping power was measured by the Grip Track Commander. Measurements were made at baseline and six weeks after the intervention. Results: the visual analogue scale, range of motion (except lateral rotation), and grasping power for each group showed significant changes at baseline and six weeks after the intervention (p<.05). Significant differences were also evident between the two groups for these three measurements (p<.05). Conclusions: Nerve mobilization exercise & scapula postural correction exercise is more effective than scapula postural correction exercise for reducing pain intensity and increasing grasping power, scapular index and range of motion (except lateral rotation) in frozen shoulder syndrome patients.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.